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§1. Introduction

Notation

C: complex numbers
V : finite-dimensional vector space over C

C[V ]: polynomial functions on vector space V
G ⊂ GL(V )
the orbit of an element v ∈ V is Gv = {g ·v : g ∈ G}
the isotropy subgroup of v is Gv = {g ∈ G : g ·v = v}
invariant polynomials: C[V ]G = {f ∈ C[V ] : f (g ·v) = f (v) for all
g ∈ G , v ∈ V }
unipotent algebraic group U ⊂ GL(V ):
conjugate to subgroup of upper triangular matrices, 1’s on the diagonal.
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§1. Introduction

Questions

What is structure of algebra of invariants?
Can the algebra of invariants be used to separate orbits?
Can generators of the algebra of invariants be written down explicitly?
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§1. Introduction

Binary forms [8] , the groups

SL2 = {
(
a b
c d

)
: ad − bc = 1}

U = {
(
1 b
0 1

)
}

T = {
(
a 0
0 1/a

)
}
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§1. Introduction

Vd : binary forms of degree d

f =

a0xd +
(
d
1

)
a1xd−1y + . . .+

(
d
i

)
ai xd−i y i + . . .+

(
d
d

)
ad yd .

g = {
(
a b
c d

)
} acts on Vd : x → (dx − by), y → (−cx + ay).
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§1. Introduction

Protomorphs for binary forms

V od = {f ∈ Vd : a1 = 0},V ´
d = {f ∈ Vd : a0 6= 0}

Have isomorphism ϕ : U × V od → V ´
d , (u, v)→ u·v
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Tan Algorithm

Algorithm [18; p. 566] for finding C[V ]U (so get C[V ]G , too)

Choose ` invariants, say, F1 = a0,F2, . . . ,F`, so that
C[F1, . . . ,F`] ⊂ C[V ]U ⊂ C[F1, . . . ,F`][ 1a0 ].
Put Fi = Fi mod the ideal a0C[V ]).
Find (finite) set of generators, say {p1, . . . , pr } for relations among Fi .
Then, pi (F1, . . . ,F`) = a

si
0 fi .

Replace {F1, . . . ,F`} by {F1, . . . ,F`, f1, . . . , fr } and repeat.
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§1. Introduction

Example

Binary cubics
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§2. Structure of algebra of invariants

A. Finite generation

Definition. k : algebraically closed field, A commutative k-algebra, G
linear algebraic group with identity e. A rational action of G on A is
given by a mapping G × A→ A, denoted by (g , a)→ ga so that: (i)
g(gá) = (gg )́a and ea = a for all g , g´∈ G , a ∈ A; (ii) the mapping
a→ ga is a k-algebra automorphism for all g ∈ G ; (iii) every element
in A is contained in a finite-dimensional subspace of A which is
invariant under G and on which G acts by a rational representation.
G acts rationally on affi ne variety X means G acts rationally on k [X ],
algebra of polynomial functions on X .
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§2. Structure of algebra of invariants

A. Finite generation

Theorem 1 (Weyl [20], Schiffer, Chevalley, Nagata [13], Haboush,
Borel, Popov [15]; also [14]). k , algebraically closed field. Let G be a
linear algebraic group. Then the following statements are equivalent:
(i) G is reductive; (ii) for each finitely generated, commutative, rational
G - algebra A, the algebra of invariants AG is finitely generated over k .
Note: When G is reductive, minimal number of generators can be
huge. Kac [11] showed that for the action of SL2 on binary forms of
odd degree d , the minimal number of generators is ≥ p(d − 2) where
p is the partition function. For upper bound on degree see [16].
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§2. Structure of algebra of invariants

A. Finite generation: localization

Theorem 2 [most recent reference: 5] G linear algebraic group, X
irreducible affi ne variety, G acts rationally on X . There is an element
a ∈ C[X ]G so that C[X ]G [1/a] is a finitely generated C - algebra. The
set of all such a forms a radical ideal.
Tan algorithm works and terminates if and only if C[X ]G is finitely
generated C-algebra.
Theorem 3 [5] Let X be an irreducible, affi ne variety and let G be a
unipotent linear algebraic group which acts regularly on X . Let Z be
the closed set consisting of the zeros of the finite generation ideal.
Then, each component of Z has codimension ≥ 2 in X .
Example: Nagata [6, p.339 and 17]
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§2. Structure of algebra of invariants

A. Finite generation: homogeneous spaces

Definition. Let G be a linear algebraic group and let H be a closed
subgroup of G . Let C[G ]H = {f ∈ C[G ] : f (gh) = f (g) for all
g ∈ G , h ∈ H}. C[G ]H = C[G/H ].
Theorem 4 [9; p. 20]. Suppose that G/H is quasi-affi ne. Then
C[G/H ] is finitely generated if and only if there is an embedding
G/H ↪→ X , where X is an affi ne variety so that codim(X\G/H) ≥ 2.
Examples: maximal unipotent subgroups, unipotent radicals of
parabolic subgroups
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§2. Structure of algebra of invariants

A. Finite generation: homogeneous spaces

Theorem 5, the boundary ideal. [1; p.4372]. Consider an open
embedding G/H ↪→ X̃ into affi ne variety X̃ . Let I(G/H) be the the
radical of the ideal in C[G ]H generated by {f ∈ C[X̃ ] : f = 0 on
X̃\G/H}. This ideal does not depend on X̃ . It is smallest nonzero
radical G`-invariant ideal of C[G ]H . Also, G/H affi ne if and only if
I(G/H) = C[G ]H .
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§2. Structure of algebra of invariants

A. Finite generation: homogeneous spaces

Popov - Pommerening conjecture: G reductive with maximal torus
T , U unipotent subgroup of G normalized by T . Then C[G ]U is a
finitely generated C - algebra.
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§2. Structure of algebra of invariants

A. Finite generation: homogeneous spaces

Definition. G reductive algebraic group, H a closed subgroup. Say H
is an epimorphic subgroup of G if C[G ]H = C.
(F) for any finite-dimensional H-module E , the vector space
indGH E = (C[G ]⊗ E )H is finite-dimensional over C.
(FG) there is a character χ ∈ X (H) such that the subgroup
Hχ = {h ∈ H : χ(h) = 1} satisfies: C[G ]Hχ is a finitely generated
C-algebra.
(SFG) The algebra is C[G ]RuH is finitely generated over C where RuH
is unipotent radical of H. Popov-Pommerening conjecture ⇒(SFG)
(SFG) ⇒ (FG) ⇒ (F). Nagata: (F) does not imply (FG).
Borel-Bien-Kollar [2]: G reductive. If H is epimorphic in G and
normalized by a maximal torus, then (F).
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§2. Structure of algebra of invariants

B. Transfer Principle

Transfer Principle [Roberts (1861), [8], also 9; p. 49]. G linear
algebraic group, H a closed subgroup. Let M be a rational G - module.
Then (M ⊗C[G ]H )G ' MH where G acts by left translation on C[G ].
Corollary. Suppose that G is reductive and that X is an affi ne variety
on which G acts regularly. Let H ⊂ G . If C[G ]H is a finitely generated
C - algebra, then so is C[X ]H .
Example: Weitzenböck’s theorem [19]. G/U ↪→ A2.
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§3. Quotient spaces and separated orbits

A. Rosenlicht’s theorem

Definition. Let X be an irreducible algebraic variety, H an algebraic
group which acts regularly on Y . A geometric quotient of Y by H is a
pair (Y ,π) where Y is an algebraic variety and π : X → Y is a
morphism such that (i) π is open, constant on H-orbits and defines a
bijection between the orbits of H and the points of Y ; (ii) if O is an
open subset of Y , the mapping π∗:C[O]→ C[π−1(O)]H , given by
π∗(f )(x) = f (π(x)), is an isomorphism.
Theorem 6 (Rosenlicht) [4; p.108]: Let H be an algebraic group which
operates rationally on an irreducible (algebraic) variety X . There is a
non-empty, H-invariant, open set Xo ⊂ X with a geometric quotient
π : Xo → Yo .
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§3. Quotient spaces and separated orbits

B. Separated orbits

Definition [6; p. 331]. Let X be an affi ne variety and let H be an
algebraic group which acts regularly on X . An orbit Hx is called H -
separated if for any y ∈ X , y /∈ Hx , there is an f ∈ C[X ]H so that
f (y) 6= f (x). Let Ω2(X ,H) be the interior of the union of all the
H-separated orbits.
Examples: GL2 acts on C2; GLn acts on Mn,n by conjugation.

Grosshans (West Chester University) (Institute) Invariant theory of unipotent groups 06/2010 18 / 37



§3. Quotient spaces and separated orbits

B. Separated orbits and quotient spaces

Theorem 7 [6; p. 332]. Let X be a quasi-affi ne variety and let H be an
algebraic group which acts regularly on X . The variety Ω2(X ,H)/H
exists, is quasi-affi ne, and open in the scheme Spec(C[X ]H ).
Theorem 8 [6; p. 338]. Suppose that U is a unipotent algebraic group
which acts regularly on X . Then Ω2(X ,U) is dense in X .
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§3. Quotient spaces and separated orbits

C. Reductive groups

Definition. Suppose that G ⊂ GL(V ) is reductive. A point v ∈ V is
said to be stable if Gv is finite and Gv is closed
Theorem 9 (Mumford) [4; p.138, also 14]. G connected, reductive,
acts on an affi ne variety X ⊂ V

(a) A point v ∈ V is not stable if and only if there is a multiplicative,
one-parameter subgroup {γ(a) : a ∈ C∗} in G so that lim

a−>0
γ(a)v exists.

(b) Let X So be all the stable points in X . The geometric quotient of X
S
o

exists and is quasi-affi ne.
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§3. Quotient spaces and separated orbits

C. Reductive groups

Theorem 10. G connected, reductive, acts on an affi ne variety X .
The orbit Gx is separated on X if and only if it is closed in X and is of
maximal dimension. (so, stable ⇒ separated)
Example: binary forms
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§4. Separated orbits for unipotent groups

Program [7; p. 63 and 72]

U unipotent, good generalization would:
(1) use C[X ]U to separate as many orbits as possible;
(2) have suitable notion of stable point;
(3) connect (2) to creation of geometric quotient.
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§4. Separated orbits for unipotent groups

Program [7; p. 63 and 72]

From now on, suppose that G is semisimple and that U ⊂ G is a
unipotent subgroup. Suppose that U acts on an affi ne variety X . Idea
is to extend this to an action of G on X (or some variety Y ⊃ X ), then
use theory of reductive groups to get information. Will discuss easiest
case below.
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§4. Separated orbits for unipotent groups

Homogeneous spaces

Theorem 11 [9] Suppose that C[G ]U is a finitely generated C -
algebra. Let Z be the (normal) affi ne variety Z so that C[Z ] = C[G ]U .
There is a point z ∈ Z so that:
(1) U = Gz = {g ∈ G : g ·z = z};
(2) Z is the closure of the orbit Gz ;
(3) G/U is isomorphic to Gz ;
(4) dim(Z − Gz) ≤ dimZ − 2.
Example: maximal unipotent subgroups; unipotent radicals of parabolic
subgroups
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§4. Separated orbits for unipotent groups

Separated orbits again

Definition. Suppose that C[G ]U is a finitely generated C - algebra
and let z ∈ Z be as above. Let G act on an affi ne variety X . Consider
the two conditions:
(C1) The orbit Ux is U-separated on X .
(C2) The orbit G (z , x) is G -separated on Z × X .
Have (C2) ⇒ (C1) always, but not conversely.
U unipotent, have (C2) ⇔ (C3): (z , x) is G -stable on Z × X .
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§4. Separated orbits for unipotent groups

G separated and U separated

Theorem 12.[10] Suppose that G acts on a vector space V .
(a) If Gv is finite, have (C1) ⇔ (C2) at v .
(b) If dimV > dimU [1+ CardW (G ,T )], then (C1) ⇔ (C2) for all
v ∈ V .
Example: binary forms, for cubics, inequality not true but (C1) ⇔ (C2)
for all v ∈ V3.
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§4. Separated orbits for unipotent groups

A quotient variety

Theorem 13 [12; p.326]. Let G ×U X be the quotient of G × X by
the free action of U defined by u(g , x) = (gu−1, ux).
(a) This quotient is a quasi-projective variety.
(b) If the action of U on X extends to an action of G on X , this
variety is isomorphic to (G/U)× X .
(c) C[G ×U X ]G = C[(G/U)× X ]G = C[X ]U .
Example: binary forms, for cubics, inequality not true but (C1) ⇔ (C2)
for all v ∈ V3.
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§4. Separated orbits for unipotent groups

Separated orbits

Theorem 14. Let G be a connected semisimple algebraic group and
let U be a unipotent subgroup of G . Let X be an affi ne variety on
which G acts regularly. Suppose that (C1) ⇔ (C2) for all x ∈ X . Let
X (U) be the set of all U-separated orbits in X . Then X (U) is open,
dense in X , the geometric quotient X (U)/U exists, is quasi-affi ne, and
open in the affi ne variety Spec C[X ]U .
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§4. Separated orbits for unipotent groups

Doran-Kirwan theory [3, p.95]

Definition. Let H act freely on an algebraic variety X and suppose
that π : X → Y is a geometric quotient. let x ∈ X . We say that π is
locally trivial at x if there is an open set O ⊂ Y , and a mapping
σ : O → X so that x ∈ σ(O), π ◦ σ = Id , and the mapping
τ : H ×O → V , (h, y)→ h·σ(y) is an isomorphism.
Theorem 15. Let G be a connected semisimple algebraic group and
let U be a unipotent subgroup of G such that C[G ]U is a finitely
generated C - algebra. Let X be a normal affi ne variety on which G
acts regularly. Suppose that (C1) ⇔ (C2) for all x ∈ X . Let X (U) be
the set of all U-separated orbits in X and let π : X (U)→ X (U)/U be
the quotient map. Then π is locally trivial.
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