Vector invariants in arbitrary characteristic

Frank Grosshans

Aachen, RWTH

June 2010

Outline

- Sections
- §1. The general problem of vector invariants

Outline

- Sections
- §1. The general problem of vector invariants
- §2. Weyl's Theorem, char $k=0$

Outline

- Sections
- §1. The general problem of vector invariants
- §2. Weyl's Theorem, char $k=0$
- §3. An example: \mathbb{Z}_{2}

Outline

- Sections
- §1. The general problem of vector invariants
- §2. Weyl's Theorem, char $k=0$
- §3. An example: \mathbb{Z}_{2}
- §4. Counter-examples

Outline

- Sections
- §1. The general problem of vector invariants
- §2. Weyl's Theorem, char $k=0$
- §3. An example: \mathbb{Z}_{2}
- §4. Counter-examples
- §5. Main Theorem

Outline

- Sections
- §1. The general problem of vector invariants
- §2. Weyl's Theorem, char $k=0$
- §3. An example: \mathbb{Z}_{2}
- §4. Counter-examples
- §5. Main Theorem
- §6. Finite groups; Classical groups

Outline

- Sections
- §1. The general problem of vector invariants
- §2. Weyl's Theorem, char $k=0$
- §3. An example: \mathbb{Z}_{2}
- §4. Counter-examples
- §5. Main Theorem
- §6. Finite groups; Classical groups
- §7. Connections to representation theory

§1. The general problem of vector invariants

- Notation
- k : algebraically closed field of characteristic $p \geq 0$.

§1. The general problem of vector invariants

- Notation
- k : algebraically closed field of characteristic $p \geq 0$.
- $M_{n, d}$: the algebra of $n \times d$ matrices over k where $d \geq n$.

§1. The general problem of vector invariants

- Notation
- k : algebraically closed field of characteristic $p \geq 0$.
- $M_{n, d}$: the algebra of $n \times d$ matrices over k where $d \geq n$.
- $x \in M_{n, d}$, write $x=\left(x_{1}, \ldots, x_{d}\right), x_{i}$ is the i th column of x.

§1. The general problem of vector invariants

- Notation
- k : algebraically closed field of characteristic $p \geq 0$.
- $M_{n, d}$: the algebra of $n \times d$ matrices over k where $d \geq n$.
- $x \in M_{n, d}$, write $x=\left(x_{1}, \ldots, x_{d}\right), x_{i}$ is the i th column of x.
- $k\left[M_{n, d}\right]=k\left[x_{11}, \ldots, x_{1 d}, x_{21}, \ldots, x_{n d}\right]$

§1. The general problem of vector invariants

- Notation
- k : algebraically closed field of characteristic $p \geq 0$.
- $M_{n, d}$: the algebra of $n \times d$ matrices over k where $d \geq n$.
- $x \in M_{n, d}$, write $x=\left(x_{1}, \ldots, x_{d}\right), x_{i}$ is the ith column of x.
- $k\left[M_{n, d}\right]=k\left[x_{11}, \ldots, x_{1 d}, x_{21}, \ldots, x_{n d}\right]$
- $\Delta\left(x_{1}, \ldots, x_{n}\right)=\operatorname{determinant}\left(x_{1}, \ldots, x_{n}\right)$

§1. The general problem of vector invariants

- Notation
- k : algebraically closed field of characteristic $p \geq 0$.
- $M_{n, d}$: the algebra of $n \times d$ matrices over k where $d \geq n$.
- $x \in M_{n, d}$, write $x=\left(x_{1}, \ldots, x_{d}\right), x_{i}$ is the ith column of x.
- $k\left[M_{n, d}\right]=k\left[x_{11}, \ldots, x_{1 d}, x_{21}, \ldots, x_{n d}\right]$
- $\Delta\left(x_{1}, \ldots, x_{n}\right)=\operatorname{determinant}\left(x_{1}, \ldots, x_{n}\right)$
- $G L_{n}$ acts on $M_{n, d}$ by matrix multiplication:

$$
g \cdot\left(x_{1}, \ldots, x_{d}\right)=\left(g x_{1}, \ldots, g x_{d}\right)
$$

§1. The general problem of vector invariants

- Notation
- k : algebraically closed field of characteristic $p \geq 0$.
- $M_{n, d}$: the algebra of $n \times d$ matrices over k where $d \geq n$.
- $x \in M_{n, d}$, write $x=\left(x_{1}, \ldots, x_{d}\right), x_{i}$ is the ith column of x.
- $k\left[M_{n, d}\right]=k\left[x_{11}, \ldots, x_{1 d}, x_{21}, \ldots, x_{n d}\right]$
- $\Delta\left(x_{1}, \ldots, x_{n}\right)=\operatorname{determinant}\left(x_{1}, \ldots, x_{n}\right)$
- $G L_{n}$ acts on $M_{n, d}$ by matrix multiplication:

$$
g \cdot\left(x_{1}, \ldots, x_{d}\right)=\left(g x_{1}, \ldots, g x_{d}\right)
$$

- H subgroup of $G L_{n}$

§1. The general problem of vector invariants

- Problem of invariants
- Find ${ }^{H} k\left[M_{n, d}\right]=\left\{f \in k\left[M_{n, d}\right]: f(h x)=f(x)\right.$ for all $\left.h \in H, x \in M_{n, d}\right\}$

§1. The general problem of vector invariants

- Problem of invariants
- Find ${ }^{H} k\left[M_{n, d}\right]=\left\{f \in k\left[M_{n, d}\right]: f(h x)=f(x)\right.$ for all $\left.h \in H, x \in M_{n, d}\right\}$
- Example: $H=S L_{2}$

§1. The general problem of vector invariants

- The $G L_{d}$ - action
- $G L_{d}$ acts on $M_{n, d}$ by $g * x=x g^{-1}$.

§1. The general problem of vector invariants

- The $G L_{d}$ - action
- $G L_{d}$ acts on $M_{n, d}$ by $g * x=x g^{-1}$.
- $G L_{d}$ acts on $k\left[M_{n, d}\right]$ by $g * x_{i j}=\sum_{r=1}^{d} x_{i r} g_{r j}$

§1. The general problem of vector invariants

- The $G L_{d}$ - action
- $G L_{d}$ acts on $M_{n, d}$ by $g * x=x g^{-1}$.
- $G L_{d}$ acts on $k\left[M_{n, d}\right]$ by $g * x_{i j}=\sum_{r=1}^{d} x_{i r} g_{r j}$
- (Multiply an $n \times d$ matrix with entries $x_{i j}$ by g on right.)

§1. The general problem of vector invariants

- Algebra of polarized invariants
- The actions of H and $G L_{d}$ commute so $G L_{d}$ sends ${ }^{H} k\left[M_{n, d}\right]$ to itself.

§1. The general problem of vector invariants

- Algebra of polarized invariants
- The actions of H and $G L_{d}$ commute so $G L_{d}$ sends ${ }^{H} k\left[M_{n, d}\right]$ to itself.
- $G L_{d} *{ }^{H} k\left[M_{n, n}\right]$: algebra generated by all $g * f$ for $g \in G L_{d}, f \in$ $H_{k}\left[M_{n, n}\right]$

§1. The general problem of vector invariants

- Algebra of polarized invariants
- The actions of H and $G L_{d}$ commute so $G L_{d}$ sends ${ }^{H} k\left[M_{n, d}\right]$ to itself.
- $G L_{d} *{ }^{H} k\left[M_{n, n}\right]$: algebra generated by all $g * f$ for $g \in G L_{d}, f \in$ $H_{k}\left[M_{n, n}\right]$
- Call $G L_{d} * H_{k}\left[M_{n, n}\right]$ algebra of polarized invariants

§1. The general problem of vector invariants

- Algebra of polarized invariants
- The actions of H and $G L_{d}$ commute so $G L_{d}$ sends ${ }^{H} k\left[M_{n, d}\right]$ to itself.
- $G L_{d} *{ }^{H} k\left[M_{n, n}\right]$: algebra generated by all $g * f$ for $g \in G L_{d}, f \in$ $H_{k}\left[M_{n, n}\right]$
- Call $G L_{d} * H_{k}\left[M_{n, n}\right]$ algebra of polarized invariants
- $G L_{d} *{ }^{H} k\left[M_{n, n}\right] \subset{ }^{H} k\left[M_{n, d}\right]$

§1. The general problem of vector invariants

- Algebra of polarized invariants
- The actions of H and $G L_{d}$ commute so $G L_{d}$ sends ${ }^{H} k\left[M_{n, d}\right]$ to itself.
- $G L_{d} *{ }^{H} k\left[M_{n, n}\right]$: algebra generated by all $g * f$ for $g \in G L_{d}, f \in$ $H_{k}\left[M_{n, n}\right]$
- Call $G L_{d} * H_{k}\left[M_{n, n}\right]$ algebra of polarized invariants
- $G L_{d} *{ }^{H} k\left[M_{n, n}\right] \subset{ }^{H} k\left[M_{n, d}\right]$
- General problem restated: does $G L_{d}{ }^{*}{ }^{H} k\left[M_{n, n}\right]={ }^{H} k\left[M_{n, d}\right]$?

§2. Weyl's Theorem

- Weyl's Theorem and example
- Theorem [Weyl, The Classical Groups, 2nd ed., p.44]. Suppose that char $k=0$. Then, $G L_{d} *{ }^{H} k\left[M_{n, n}\right]={ }^{H} k\left[M_{n, d}\right]$

§2. Weyl's Theorem

- Weyl's Theorem and example
- Theorem [Weyl, The Classical Groups, 2nd ed., p.44]. Suppose that char $k=0$. Then, $G L_{d} *{ }^{H} k\left[M_{n, n}\right]={ }^{H} k\left[M_{n, d}\right]$
- Example: $H=S L_{2}$

§2. Weyl's Theorem

- Some history
- Borel, Essays in the History of Lie Groups and Algebraic Groups: first main theorem known for $S L_{n}, S O_{n}$, for $S p_{2 n}$ had not been previously considered

§2. Weyl's Theorem

- Some history
- Borel, Essays in the History of Lie Groups and Algebraic Groups: first main theorem known for $S L_{n}, S O_{n}$, for $S p_{2 n}$ had not been previously considered
- The orthogonal group, an integral

§2. Weyl's Theorem

- Complete reducibility, char $k=0$
- G reductive, U maximal unipotent subgroup

§2. Weyl's Theorem

- Complete reducibility, char $k=0$
- G reductive, U maximal unipotent subgroup
- Call V irreducible G-module if V has no proper non-zero G-invariant subspaces

§2. Weyl's Theorem

- Complete reducibility, char $k=0$
- G reductive, U maximal unipotent subgroup
- Call V irreducible G-module if V has no proper non-zero G-invariant subspaces
- Theorem (complete reducibility). V finite-dimensional G-module, $V=\oplus V_{i}$ where V_{i} is finite-dimensional, irreducible $G L_{d}$-module

§2. Weyl's Theorem

- Complete reducibility, char $k=0$
- G reductive, U maximal unipotent subgroup
- Call V irreducible G-module if V has no proper non-zero G-invariant subspaces
- Theorem (complete reducibility). V finite-dimensional G-module, $V=\oplus V_{i}$ where V_{i} is finite-dimensional, irreducible $G L_{d}$-module
- Theorem (highest weight vector) V finite-dimensional vector space, $\rho: G \rightarrow G L(V)$ irreducible representation. There is a unique (up to scalar) non-zero $v_{o} \in V$ so that $u \cdot v_{o}=v_{o}$ for all $u \in U$. Furthermore, $V=\left\langle G \cdot v_{0}\right\rangle$, the linear span of all the elements $g \cdot v_{0}, g \in G$.

§2. Weyl's Theorem

- Complete reducibility, char $k=0$
- G reductive, U maximal unipotent subgroup
- Call V irreducible G-module if V has no proper non-zero G-invariant subspaces
- Theorem (complete reducibility). V finite-dimensional G-module, $V=\oplus V_{i}$ where V_{i} is finite-dimensional, irreducible $G L_{d}$-module
- Theorem (highest weight vector) V finite-dimensional vector space, $\rho: G \rightarrow G L(V)$ irreducible representation. There is a unique (up to scalar) non-zero $v_{o} \in V$ so that $u \cdot v_{o}=v_{o}$ for all $u \in U$. Furthermore, $V=\left\langle G \cdot v_{0}\right\rangle$, the linear span of all the elements $g \cdot v_{o}, g \in G$.
- Theorem. Let V, W be finite-dimensional G-modules with $V \subset W$. If $v^{U}=W^{U}$, then $V=W$.

§2. Weyl's Theorem

- Proof of Weyl's Theorem, char $k=0$
- ${ }^{H} k\left[M_{n, d}\right]=\oplus V_{i}$ where V_{i} is finite-dimensional, irreducible $G L_{d}$-module

§2. Weyl's Theorem

- Proof of Weyl's Theorem, char $k=0$
- ${ }^{H} k\left[M_{n, d}\right]=\oplus V_{i}$ where V_{i} is finite-dimensional, irreducible $G L_{d}$-module
- $U=$ subgroup of $G L_{d}$ consisting of upper triangular matrices with 1's on diagonal.

§2. Weyl's Theorem

- Proof of Weyl's Theorem, char $k=0$
- ${ }^{H} k\left[M_{n, d}\right]=\oplus V_{i}$ where V_{i} is finite-dimensional, irreducible $G L_{d}$-module
- $U=$ subgroup of $G L_{d}$ consisting of upper triangular matrices with 1's on diagonal.
- Any irreducible $G L_{d}$ - module is linear span of all the $g * v_{o}$ where $g \in G L_{d}$ and v_{o} is a highest weight vector.

§2. Weyl's Theorem

- Proof of Weyl's Theorem, char $k=0$
- ${ }^{H} k\left[M_{n, d}\right]=\oplus V_{i}$ where V_{i} is finite-dimensional, irreducible $G L_{d}$-module
- $U=$ subgroup of $G L_{d}$ consisting of upper triangular matrices with 1's on diagonal.
- Any irreducible $G L_{d}$ - module is linear span of all the $g * v_{o}$ where $g \in G L_{d}$ and v_{o} is a highest weight vector.
- Have ${ }^{H} k\left[M_{n, d}\right]^{U} \subset{ }^{H} k\left[M_{n, n}\right]^{U} \subset\left(G L_{d} *^{H} k\left[M_{n, n}\right]\right)^{U}$.

§2. Weyl's Theorem

- Proof of Weyl's Theorem, char $k=0$
- ${ }^{H} k\left[M_{n, d}\right]=\oplus V_{i}$ where V_{i} is finite-dimensional, irreducible $G L_{d}$-module
- $U=$ subgroup of $G L_{d}$ consisting of upper triangular matrices with 1's on diagonal.
- Any irreducible $G L_{d}$ - module is linear span of all the $g * v_{o}$ where $g \in G L_{d}$ and v_{o} is a highest weight vector.
- Have ${ }^{H} k\left[M_{n, d}\right]^{U} \subset{ }^{H} k\left[M_{n, n}\right]^{U} \subset\left(G L_{d} *^{H} k\left[M_{n, n}\right]\right)^{U}$.
- Conclude that $G L_{d} *{ }^{H} k\left[M_{n, n}\right]={ }^{H} k\left[M_{n, n}\right]$.

§4. Counter-examples

- Finding counter-examples
- If $G L_{d} *{ }^{H} k\left[M_{n, n}\right]={ }^{H}{ }_{k}\left[M_{n, d}\right]$ for all d, then there is a positive integer N so that ${ }^{H} k\left[M_{n, d}\right]$ is generated by polynomials of degree $\leq N$ for all d.

§4. Counter-examples

- Finding counter-examples
- If $G L_{d} *{ }^{H} k\left[M_{n, n}\right]={ }^{H}{ }_{k}\left[M_{n, d}\right]$ for all d, then there is a positive integer N so that ${ }^{H} k\left[M_{n, d}\right]$ is generated by polynomials of degree $\leq N$ for all d.
- Thus, if the maximal degree of the generators for ${ }^{H} k\left[M_{n, d}\right]$ increases with d, then $G L_{d}{ }^{H}{ }^{H}\left[M_{n, n}\right] \nsubseteq{ }^{H} k\left[M_{n, d}\right]$ when d is sufficiently large.

§4. Counter-examples

- Finite groups
- Example: \mathbb{Z}_{2}

§4. Counter-examples

- Finite groups
- Example: \mathbb{Z}_{2}
- Theorem (Richman, 1996). H finite, char $k=p, p$ divides $|H|$, then every set of k-algebra generators for ${ }^{H} k\left[M_{n, d}\right]$ contains a generator of degree $d(p-1) /\left(p^{|H|-1}-1\right)$

§5. Main Theorem

- p-root closure
- Definition. Let char $k=p>0$ and let R and S be commutative k algebras with $R \subset S$. We say that S is contained in the p-root closure of R if for every $s \in S$, there is a non- negative integer m so that $s^{p^{m}} \in R$.

§5. Main Theorem

- p-root closure
- Definition. Let char $k=p>0$ and let R and S be commutative k algebras with $R \subset S$. We say that S is contained in the p-root closure of R if for every $s \in S$, there is a non- negative integer m so that $s^{p^{m}} \in R$.
- Main Theorem. H closed subgroup of $G L_{n}$. Then ${ }^{H} k\left[M_{n, d}\right]$ is contained in the p-root closure of $G L_{d}{ }^{H}{ }^{H} k\left[M_{n, n}\right]$. (If $p=0$, have equality.)

§5. Main Theorem

- Complete reducibility, char $k=p>0$
- G reductive, U maximal unipotent subgroup

§5. Main Theorem

- Complete reducibility, char $k=p>0$
- G reductive, U maximal unipotent subgroup
- do not have compete reducibility; char $k=2, V=\langle v, w\rangle$, $G=G L_{2}$, look at $S^{2}(V)$

§5. Main Theorem

- Integral extensions
- Definition. A commutative k-algebra, G linear algebraic group with identity e. A rational action of G on A is given by a mapping $G \times A \rightarrow A$, denoted by $(g, a) \rightarrow g a$ so that: (i) $g\left(g^{\prime} a\right)=\left(g g^{\prime}\right) a$ and $e a=a$ for all $g, g^{\prime} \in G, a \in A$; (ii) the mapping $a \rightarrow g a$ is a k-algebra automorphism for all $g \in G$; (iii) every element in A is contained in a finite-dimensional subspace of A which is invariant under G and on which G acts by a rational representation.

§5. Main Theorem

- Integral extensions
- Definition. A commutative k-algebra, G linear algebraic group with identity e. A rational action of G on A is given by a mapping $G \times A \rightarrow A$, denoted by $(g, a) \rightarrow g a$ so that: (i) $g\left(g^{\prime} a\right)=\left(g g^{\prime}\right) a$ and ea $=a$ for all $g, g^{\prime} \in G, a \in A$; (ii) the mapping $a \rightarrow g a$ is a k-algebra automorphism for all $g \in G$; (iii) every element in A is contained in a finite-dimensional subspace of A which is invariant under G and on which G acts by a rational representation.
- Theorem. G reductive, A commutative k-algebra on which G acts rationally. Then A is integral over $G \cdot A^{U}$, smallest G-invariant algebra containing A^{U}.

§5. Main Theorem

- Proof of Main Theorem
- $U \subset G L_{d}$, upper triangular matrices with 1 's on diagonal: $k\left[M_{n, d}\right]^{U} \subset k\left[M_{n, n}\right]$

§5. Main Theorem

- Proof of Main Theorem
- $U \subset G L_{d}$, upper triangular matrices with 1 's on diagonal: $k\left[M_{n, d}\right]^{U} \subset k\left[M_{n, n}\right]$
- ${ }^{H} k\left[M_{n, d}\right]$ is integral over $G L_{d} *{ }^{H} k\left[M_{n, n}\right] U$

§5. Main Theorem

- Proof of Main Theorem
- $U \subset G L_{d}$, upper triangular matrices with 1's on diagonal: $k\left[M_{n, d}\right]^{U} \subset k\left[M_{n, n}\right]$
- ${ }^{H} k\left[M_{n, d}\right]$ is integral over $G L_{d} *{ }^{H} k\left[M_{n, n}\right]^{U}$
- Separating orbits (Draisma, Kemper, Wehlau): let $x, y \in M_{n, d}$. If there is an $F \in^{H} k\left[M_{n, d}\right]$ with $F(x) \neq F(y)$, then there is an $F_{o} \in G L_{d} *^{H} k\left[M_{n, n}\right]$ with $F_{o}(x) \neq F_{o}(y)$.

§5. Main Theorem

- Proof of Main Theorem
- $U \subset G L_{d}$, upper triangular matrices with 1's on diagonal: $k\left[M_{n, d}\right]^{U} \subset k\left[M_{n, n}\right]$
- ${ }^{H} k\left[M_{n, d}\right]$ is integral over $G L_{d} *{ }^{H} k\left[M_{n, n}\right]^{U}$
- Separating orbits (Draisma, Kemper, Wehlau): let $x, y \in M_{n, d}$. If there is an $F \in^{H} k\left[M_{n, d}\right]$ with $F(x) \neq F(y)$, then there is an $F_{o} \in G L_{d} *^{H} k\left[M_{n, n}\right]$ with $F_{o}(x) \neq F_{o}(y)$.
- (van der Kallen). Suppose that char $k=p>0$. Let X and Y be affine varieties and let $f: X \rightarrow Y$ be a proper bijective morphism. Then $k[X]$ is contained in the p-root closure of $k[Y]$.

§5. Main Theorem

- Proof of Main Theorem
- $U \subset G L_{d}$, upper triangular matrices with 1's on diagonal: $k\left[M_{n, d}\right]^{U} \subset k\left[M_{n, n}\right]$
- ${ }^{H} k\left[M_{n, d}\right]$ is integral over $G L_{d} *{ }^{H} k\left[M_{n, n}\right]^{U}$
- Separating orbits (Draisma, Kemper, Wehlau): let $x, y \in M_{n, d}$. If there is an $F \in^{H} k\left[M_{n, d}\right]$ with $F(x) \neq F(y)$, then there is an $F_{o} \in G L_{d} *^{H} k\left[M_{n, n}\right]$ with $F_{o}(x) \neq F_{o}(y)$.
- (van der Kallen). Suppose that char $k=p>0$. Let X and Y be affine varieties and let $f: X \rightarrow Y$ be a proper bijective morphism. Then $k[X]$ is contained in the p-root closure of $k[Y]$.
- Put $X=\operatorname{Spec}^{H} k\left[M_{n, d}\right], Y=\operatorname{Spec} G L_{d}{ }^{*}{ }^{H} k\left[M_{n, n}\right]^{U}$

§6. More examples

- Finite groups
- char $k=0$ or char $k=p$ where $p \nmid|H|$ (non-modular case)

§6. More examples

- Finite groups
- char $k=0$ or char $k=p$ where $p \nmid|H|$ (non-modular case)
- Theorem (Losik, Malik, Popov) ${ }^{H} k\left[M_{n, d}\right]$ is the integral closure of $G L_{d} *{ }^{H}{ }_{k}\left[M_{n, 1}\right]$ in its quotient field

§6. More examples

- Finite groups
- char $k=0$ or char $k=p$ where $p \nmid|H|$ (non-modular case)
- Theorem (Losik, Malik, Popov) ${ }^{H} k\left[M_{n, d}\right]$ is the integral closure of $G L_{d}{ }^{*}{ }^{H} k\left[M_{n, 1}\right]$ in its quotient field
- char $k=p, p$ divides $|H|$ (modular case)

§6. More examples

- Finite groups
- char $k=0$ or char $k=p$ where $p \nmid|H|$ (non-modular case)
- Theorem (Losik, Malik, Popov) ${ }^{H} k\left[M_{n, d}\right]$ is the integral closure of $G L_{d}{ }^{H}{ }_{k}\left[M_{n, 1}\right]$ in its quotient field
- char $k=p, p$ divides $|H|$ (modular case)
- Theorem. ${ }^{H} k\left[M_{n, d}\right]$ is contained in the p-root closure of $G L_{d} *$ $H_{k}\left[M_{n, 1}\right]$.

§6. More examples

- Finite groups
- char $k=0$ or char $k=p$ where $p \nmid|H|$ (non-modular case)
- Theorem (Losik, Malik, Popov) ${ }^{H} k\left[M_{n, d}\right]$ is the integral closure of $G L_{d} *{ }^{H} k\left[M_{n, 1}\right]$ in its quotient field
- char $k=p, p$ divides $|H|$ (modular case)
- Theorem. ${ }^{H} k\left[M_{n, d}\right]$ is contained in the p-root closure of $G L_{d} *$ $H_{k\left[M_{n, 1}\right]}$.
- Problem 1: Describe smallest p th power that works.

§6. More examples

- Finite groups
- char $k=0$ or char $k=p$ where $p \nmid|H|$ (non-modular case)
- Theorem (Losik, Malik, Popov) ${ }^{H} k\left[M_{n, d}\right]$ is the integral closure of $G L_{d}{ }^{H}{ }_{k}\left[M_{n, 1}\right]$ in its quotient field
- char $k=p, p$ divides $|H|$ (modular case)
- Theorem. ${ }^{H} k\left[M_{n, d}\right]$ is contained in the p-root closure of $G L_{d} *$ $\left.H_{k[} M_{n, 1}\right]$.
- Problem 1: Describe smallest p th power that works.
- Problem 2: Explain Richman's theorem

§6. More examples

- Classical groups
- classical groups: $S L_{n}, O_{n}, S p_{2 n}$

§6. More examples

- Classical groups
- classical groups: $S L_{n}, O_{n}, S p_{2 n}$
- invariants for char $k=p>0$ same as for char $k=0$ (Igusa, Rota, De Concini, Procesi)

§7. Connections to representation theory

- Three related problems
- When is $G L_{d} *{ }^{H} k\left[M_{n, n}\right]={ }^{H} k\left[M_{n, d}\right]$?

§7. Connections to representation theory

- Three related problems
- When is $G L_{d} *{ }^{H} k\left[M_{n, n}\right]={ }^{H} k\left[M_{n, d}\right]$?
- Why are the invariants of the classical groups the same in all characteristics?

§7. Connections to representation theory

- Three related problems
- When is $G L_{d} *{ }^{H} k\left[M_{n, n}\right]={ }^{H} k\left[M_{n, d}\right]$?
- Why are the invariants of the classical groups the same in all characteristics?
- Why is Richman's theorem true?

§7. Connections to representation theory

- Three related problems
- When is $G L_{d} *{ }^{H} k\left[M_{n, n}\right]={ }^{H} k\left[M_{n, d}\right]$?
- Why are the invariants of the classical groups the same in all characteristics?
- Why is Richman's theorem true?
- Answers (?): lie in the study of the representation of $G L_{d}$ on ${ }^{H} k\left[M_{n, d}\right]$.

§7. Connections to representation theory

- Graded algebra
- Can construct a graded algebra, $\operatorname{gr}\left({ }^{H} k\left[M_{n, d}\right]\right)$. There is an $G L_{d}$ equivariant algebra monomorphism $\Phi: \operatorname{gr}\left({ }^{H} k\left[M_{n, d}\right]\right) \rightarrow \oplus V_{i}$ where the V_{i} are Schur modules.

§7. Connections to representation theory

- Graded algebra
- Can construct a graded algebra, $\operatorname{gr}\left({ }^{H} k\left[M_{n, d}\right]\right)$. There is an $G L_{d}$ equivariant algebra monomorphism $\Phi: \operatorname{gr}\left({ }^{H} k\left[M_{n, d}\right]\right) \rightarrow \oplus V_{i}$ where the V_{i} are Schur modules.
- Any Schur module has unique (up to scalar) highest weight vector.

§7. Connections to representation theory

- Graded algebra
- Can construct a graded algebra, $\operatorname{gr}\left({ }^{H} k\left[M_{n, d}\right]\right)$. There is an $G L_{d}$ equivariant algebra monomorphism $\Phi: \operatorname{gr}\left({ }^{H} k\left[M_{n, d}\right]\right) \rightarrow \oplus V_{i}$ where the V_{i} are Schur modules.
- Any Schur module has unique (up to scalar) highest weight vector.
- In the case of ${ }^{H} k\left[M_{n, d}\right]$, these highest weight vectors are all in $H_{k}\left[M_{n, n}\right]$.

§7. Connections to representation theory

- Graded algebra
- Can construct a graded algebra, $\operatorname{gr}\left({ }^{H} k\left[M_{n, d}\right]\right)$. There is an $G L_{d}$ equivariant algebra monomorphism $\Phi: \operatorname{gr}\left({ }^{H} k\left[M_{n, d}\right]\right) \rightarrow \oplus V_{i}$ where the V_{i} are Schur modules.
- Any Schur module has unique (up to scalar) highest weight vector.
- In the case of ${ }^{H} k\left[M_{n, d}\right]$, these highest weight vectors are all in $H_{k}\left[M_{n, n}\right]$.
- But, in general, V_{i} is not the linear span of the $g * v_{o}$ where v_{o} is a highest weight vector.

§7. Connections to representation theory

- Three conditions
- By restriction, get algebra monomorphism $\Phi^{\prime}: g r\left(G L_{d} *\right.$ $\left.H_{k}\left[M_{n, d}\right]\right) \rightarrow \oplus V_{i}$

§7. Connections to representation theory

- Three conditions
- By restriction, get algebra monomorphism $\Phi^{\prime}: \operatorname{gr}\left(G L_{d} *\right.$ $\left.H_{k}\left[M_{n, d}\right]\right) \rightarrow \oplus V_{i}$
- (C1) Φ^{\prime} is surjective

§7. Connections to representation theory

- Three conditions
- By restriction, get algebra monomorphism $\Phi^{\prime}: \operatorname{gr}\left(G L_{d} *\right.$ $\left.H_{k}\left[M_{n, d}\right]\right) \rightarrow \oplus V_{i}$
- (C1) Φ^{\prime} is surjective
- (C2) $\operatorname{gr}\left(G L_{d} *{ }^{H} k\left[M_{n, d}\right]\right)$ has a good $G L_{d}$ - filtration.

§7. Connections to representation theory

- Three conditions
- By restriction, get algebra monomorphism Φ : $g r\left(G L_{d} *\right.$ $\left.H_{k}\left[M_{n, d}\right]\right) \rightarrow \oplus V_{i}$
- (C1) Φ is surjective
- (C2) $\operatorname{gr}\left(G L_{d}{ }^{*}{ }^{H} k\left[M_{n, d}\right]\right)$ has a good $G L_{d}$ - filtration.
-(C3) $G L_{d} *{ }^{H} k\left[M_{n, n}\right]={ }^{H} k\left[M_{n, d}\right]$

§7. Connections to representation theory

- Three conditions
- By restriction, get algebra monomorphism Φ : $g r\left(G L_{d} *\right.$ $\left.H_{k}\left[M_{n, d}\right]\right) \rightarrow \oplus V_{i}$
- (C1) Φ is surjective

- (C3) $G L_{d}{ }^{*}{ }^{H} k\left[M_{n, n}\right]={ }^{H} k\left[M_{n, d}\right]$
- (C1) if and only if (C2).

§7. Connections to representation theory

- Three conditions
- By restriction, get algebra monomorphism $\Phi^{\prime}: \operatorname{gr}\left(G L_{d} *\right.$ $\left.H_{k}\left[M_{n, d}\right]\right) \rightarrow \oplus V_{i}$
- (C1) Φ is surjective

- (C3) $G L_{d} *{ }^{H} k\left[M_{n, n}\right]={ }^{H} k\left[M_{n, d}\right]$
- (C1) if and only if (C2).
- (C2) implies (C3)

§7. Connections to representation theory

- Three conditions
- Theorem. $U=$ maximal unipotent subgroup of $G L_{d}$ consisting of upper triangular matrices with 1 's on diagonal, $T=$ diagonal matrices. Suppose that ${ }^{H} k\left[M_{n, d}\right]^{U}=k\left[a_{1}, \ldots, a_{r}\right]$ with a_{i} having T-weight ω_{i}. If Schur module with highest weight ω_{i} is irreducible for $i=1, \ldots, r$, then Φ is surjective and $G L_{d} *{ }^{H} k\left[M_{n, n}\right]={ }^{H} k\left[M_{n, d}\right]$.

§7. Connections to representation theory

- Three conditions
- Theorem. $U=$ maximal unipotent subgroup of $G L_{d}$ consisting of upper triangular matrices with 1 's on diagonal, $T=$ diagonal matrices. Suppose that ${ }^{H} k\left[M_{n, d}\right]^{U}=k\left[a_{1}, \ldots, a_{r}\right]$ with a_{i} having T-weight ω_{i}. If Schur module with highest weight ω_{i} is irreducible for $i=1, \ldots, r$, then Φ is surjective and $G L_{d}{ }^{*}{ }^{H} k\left[M_{n, n}\right]={ }^{H} k\left[M_{n, d}\right]$.
- Examples: classical groups

References

- References
- C. De Concini, C. Procesi, A characteristic-free approach to invariant theory, Advances in Math. 21 (1976), no.3, 330-354.

References

- References
- C. De Concini, C. Procesi, A characteristic-free approach to invariant theory, Advances in Math. 21 (1976), no.3, 330-354.
- M. Domokos, Matrix invariants and the failure of Weyl's theorem. Polynomial identities and combinatorial methods (Pantelleria, 2001), 215-236, Lecture Notes in Pure and Appl. Math., 235, Dekker, New York, 2003.

References

- References
- C. De Concini, C. Procesi, A characteristic-free approach to invariant theory, Advances in Math. 21 (1976), no.3, 330-354.
- M. Domokos, Matrix invariants and the failure of Weyl's theorem. Polynomial identities and combinatorial methods (Pantelleria, 2001), 215-236, Lecture Notes in Pure and Appl. Math., 235, Dekker, New York, 2003.
- J. Draisma, G. Kemper, D. Wehlau, Polarization of separating invariants, Canad. J. Math. 60 (2008), no. 3, 556-571.

References

- References
- C. De Concini, C. Procesi, A characteristic-free approach to invariant theory, Advances in Math. 21 (1976), no.3, 330-354.
- M. Domokos, Matrix invariants and the failure of Weyl's theorem. Polynomial identities and combinatorial methods (Pantelleria, 2001), 215-236, Lecture Notes in Pure and Appl. Math., 235, Dekker, New York, 2003.
- J. Draisma, G. Kemper, D. Wehlau, Polarization of separating invariants, Canad. J. Math. 60 (2008), no. 3, 556-571.
- F. Knop, On Noether's and Weyl's bound in positive characteristic. Invariant theory in all characteristics, 175-188, CRM Proc. Lecture Notes, 35, Amer. Math. Soc., Providence, RI, 2004.

References

- References
- C. De Concini, C. Procesi, A characteristic-free approach to invariant theory, Advances in Math. 21 (1976), no.3, 330-354.
- M. Domokos, Matrix invariants and the failure of Weyl's theorem. Polynomial identities and combinatorial methods (Pantelleria, 2001), 215-236, Lecture Notes in Pure and Appl. Math., 235, Dekker, New York, 2003.
- J. Draisma, G. Kemper, D. Wehlau, Polarization of separating invariants, Canad. J. Math. 60 (2008), no. 3, 556-571.
- F. Knop, On Noether's and Weyl's bound in positive characteristic. Invariant theory in all characteristics, 175-188, CRM Proc. Lecture Notes, 35, Amer. Math. Soc., Providence, RI, 2004.
- M. Losik, P.W. Michor, V.L. Popov, On polarizations in invariant theory, J. Algebra 301 (2006), no. 1, 406-424.

References

- References
- D.R. Richman, The fundamental theorems of vector invariants, Adv. in Math. 73 (1989), no. 1, 43-78.

References

- References
- D.R. Richman, The fundamental theorems of vector invariants, Adv. in Math. 73 (1989), no. 1, 43-78.
- D.R. Richman, Invariants of finite groups over fields of characteristic p, Adv. Math. 124 (1996), no. 1, 25-48.

References

- References
- D.R. Richman, The fundamental theorems of vector invariants, Adv. in Math. 73 (1989), no. 1, 43-78.
- D.R. Richman, Invariants of finite groups over fields of characteristic p, Adv. Math. 124 (1996), no. 1, 25-48.
- W. van der Kallen, http://www.math.uu.nl/people/vdkallen/errbmod.pdf

References

- References
- D.R. Richman, The fundamental theorems of vector invariants, Adv. in Math. 73 (1989), no. 1, 43-78.
- D.R. Richman, Invariants of finite groups over fields of characteristic p, Adv. Math. 124 (1996), no. 1, 25-48.
- W. van der Kallen, http://www.math.uu.nl/people/vdkallen/errbmod.pdf
- H. Weyl, The Classical Groups. Princeton University Press, Princeton, NJ, 1946.

Slides - Beamer

- This document illustrates the appearance of a presentation created with the shell Slides - Beamer.
- The $A T_{E} X$ Beamer document class produces presentations, handouts, and transparency slides as typeset PDF files.
- DVI output is not available.
- The class provides
- Control of layout, color, and fonts
- A variety of list and list display mechanisms
- Dynamic transitions between slides
- Presentations containing text, mathematics, graphics, and animations
- A single document file contains an entire Beamer presentation.
- Each slide in the presentation is created inside a frame environment.
- To produce a sample presentation in SWP or SW, typeset this shell document with PDFLATEX.

Beamer Files

- The document class base file for this shell is beamer.cls.
- To see the available class options, choose Typeset, choose Options and Packages, select the Class Options tab, and then click the Modify button.
- This shell specifies showing all notes but otherwise uses the default class options.
- The typesetting specification for this shell document uses these options and packages with the defaults indicated:

Options and Packages	Defaults
Document class options	Show notes
Packages:	
\quad hyperref	Standard
mathpazo	None
multimedia	None

Using This Shell

- The front matter of this shell has a number of sample entries that you should replace with your own.
- Replace the body of this document with your own text. To start with a blank document, delete all of the text in this document.
- Changes to the typeset format of this shell and its associated LATEX formatting file (beamer.cls) are not supported by MacKichan Software, Inc. If you want to make such changes, please consult the ATTEX manuals or a local $\operatorname{AT} T_{E X}$ expert.
- If you modify this document and export it as "Slides - Beamer.shl" in the Shells \backslash Other \backslash SW directory, it will become your new Slides Beamer shell.

What is Beamer?

- Beamer is a $A T_{E X}$ document class that produces beautiful PDFLATEX presentations and transparency slides.
- Beamer presentations feature
- pdFATEX output
- To produce a sample presentation in SWP or SW, typeset this shell document with PDFLATEX.

What is Beamer?

- Beamer is a $A T_{E X}$ document class that produces beautiful PDFLATEX presentations and transparency slides.
- Beamer presentations feature
- PDFFATEX output
- Global and local control of layout, color, and fonts
- To produce a sample presentation in SWP or SW, typeset this shell document with PDFLATEX.

What is Beamer?

- Beamer is a $A T_{E X}$ document class that produces beautiful PDFLATEX presentations and transparency slides.
- Beamer presentations feature
- PDFLATEX output
- Global and local control of layout, color, and fonts
- List items that can appear one at a time
- To produce a sample presentation in SWP or SW, typeset this shell document with PDFLATEX.

What is Beamer?

- Beamer is a $A T_{E X}$ document class that produces beautiful PDFADTEX presentations and transparency slides.
- Beamer presentations feature
- PDFLATEX output
- Global and local control of layout, color, and fonts
- List items that can appear one at a time
- Overlays and dynamic transitions between slides
- To produce a sample presentation in SWP or SW, typeset this shell document with PDFLATEX .

What is Beamer?

- Beamer is a $A T_{E X}$ document class that produces beautiful PDFADTEX presentations and transparency slides.
- Beamer presentations feature
- PDFLATEX output
- Global and local control of layout, color, and fonts
- List items that can appear one at a time
- Overlays and dynamic transitions between slides
- Standard LATEX constructs
- To produce a sample presentation in SWP or SW, typeset this shell document with PDFLATEX .

What is Beamer?

- Beamer is a $A T_{E X}$ document class that produces beautiful PDFLATEX presentations and transparency slides.
- Beamer presentations feature
- PDFLATEX output
- Global and local control of layout, color, and fonts
- List items that can appear one at a time
- Overlays and dynamic transitions between slides
- Standard LATEX constructs
- Typeset text, mathematics $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$, and graphics
- To produce a sample presentation in SWP or SW, typeset this shell document with PDFLATEX .

Creating frames

- All the information in a Beamer presentation is contained in frames.

Creating frames

- All the information in a Beamer presentation is contained in frames.
- Each frame corresponds to a single presentation slide.

Creating frames

- All the information in a Beamer presentation is contained in frames.
- Each frame corresponds to a single presentation slide.
- To create frames in a Beamer document,

Creating frames

- All the information in a Beamer presentation is contained in frames.
- Each frame corresponds to a single presentation slide.
- To create frames in a Beamer document,
(1) Apply a frame fragment:

Creating frames

- All the information in a Beamer presentation is contained in frames.
- Each frame corresponds to a single presentation slide.
- To create frames in a Beamer document,
(1) Apply a frame fragment:
- The Frame with title and subtitle fragment starts and ends a new frame and includes a title and subtitle.

Creating frames

- All the information in a Beamer presentation is contained in frames.
- Each frame corresponds to a single presentation slide.
- To create frames in a Beamer document,
(1) Apply a frame fragment:
- The Frame with title and subtitle fragment starts and ends a new frame and includes a title and subtitle.
- The Frame with title fragment starts and ends a new frame and includes a title.

Creating frames

- All the information in a Beamer presentation is contained in frames.
- Each frame corresponds to a single presentation slide.
- To create frames in a Beamer document,
(1) Apply a frame fragment:
- The Frame with title and subtitle fragment starts and ends a new frame and includes a title and subtitle.
- The Frame with title fragment starts and ends a new frame and includes a title.
- The Frame fragment starts and ends a new frame.

Creating frames

- All the information in a Beamer presentation is contained in frames.
- Each frame corresponds to a single presentation slide.
- To create frames in a Beamer document,
(1) Apply a frame fragment:
- The Frame with title and subtitle fragment starts and ends a new frame and includes a title and subtitle.
- The Frame with title fragment starts and ends a new frame and includes a title.
- The Frame fragment starts and ends a new frame.
(2) Place the text for the frame between the BeginFrame and EndFrame fields.

Creating frames

- All the information in a Beamer presentation is contained in frames.
- Each frame corresponds to a single presentation slide.
- To create frames in a Beamer document,
(1) Apply a frame fragment:
- The Frame with title and subtitle fragment starts and ends a new frame and includes a title and subtitle.
- The Frame with title fragment starts and ends a new frame and includes a title.
- The Frame fragment starts and ends a new frame.
(2) Place the text for the frame between the BeginFrame and EndFrame fields.
(3) Enter the frame title and subtitle.

If you used the Frame fragment, apply the Frame title and Frame subtitle text tags as necessary.

Learn more about Beamer

- This shell and the associated fragments provide basic support for Beamer in SWP and SW.
- To learn more about Beamer, see SWSamples/PackageSample-beamer.tex in your program installation.
- For complete information, read the BeamerUserGuide.pdf manual found via a link at the end of SWSamples/PackageSample-beamer.tex.
- For support, contact support@mackichan.com.

