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§1. The general problem of vector invariants

Notation

k : algebraically closed field of characteristic p ≥ 0.

Mn,d : the algebra of n× d matrices over k where d ≥ n.
x ∈ Mn,d , write x = (x1, ..., xd ), xi is the ith column of x .
k [Mn,d ] = k [x11, . . . , x1d , x21, . . . , xnd ]
∆(x1, . . . , xn) = determinant(x1, . . . , xn)
GLn acts on Mn,d by matrix multiplication:
g ·(x1, ..., xd ) = (gx1, ..., gxd )
H subgroup of GLn
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§1. The general problem of vector invariants

Problem of invariants

Find H k [Mn,d ] = {f ∈ k [Mn,d ] : f (hx) = f (x) for all
h ∈ H, x ∈ Mn,d }

Example: H = SL2
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§1. The general problem of vector invariants

The GLd - action

GLd acts on Mn,d by g ∗ x = xg−1.

GLd acts on k [Mn,d ] by g ∗ xij =
d
∑
r=1

xir grj

(Multiply an n× d matrix with entries xij by g on right.)
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§1. The general problem of vector invariants

Algebra of polarized invariants

The actions of H and GLd commute so GLd sends H k [Mn,d ] to itself.

GLd ∗ H k [Mn,n ]: algebra generated by all g ∗ f for g ∈ GLd , f ∈
H k [Mn,n ]
Call GLd ∗ H k [Mn,n ] algebra of polarized invariants
GLd ∗ H k [Mn,n ] ⊂ H k [Mn,d ]
General problem restated: does GLd ∗ H k [Mn,n ] = H k [Mn,d ]?
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§2. Weyl’s Theorem

Weyl’s Theorem and example

Theorem [Weyl, The Classical Groups, 2nd ed., p.44]. Suppose that
char k = 0. Then, GLd ∗ H k [Mn,n ] = H k [Mn,d ]

Example: H = SL2
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§2. Weyl’s Theorem

Some history

Borel, Essays in the History of Lie Groups and Algebraic Groups: first
main theorem known for SLn , SOn , for Sp2n had not been previously
considered

The orthogonal group, an integral
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§2. Weyl’s Theorem

Complete reducibility, char k = 0

G reductive, U maximal unipotent subgroup

Call V irreducible G -module if V has no proper non-zero G -invariant
subspaces
Theorem (complete reducibility). V finite-dimensional G -module,
V = ⊕Vi where Vi is finite-dimensional, irreducible GLd -module
Theorem (highest weight vector) V finite-dimensional vector space,
ρ : G → GL(V ) irreducible representation. There is a unique (up to
scalar) non-zero vo ∈ V so that u·vo = vo for all u ∈ U. Furthermore,
V =< G ·vo >, the linear span of all the elements g ·vo ,g ∈ G .
Theorem. Let V ,W be finite-dimensional G -modules with V ⊂ W . If
VU = WU , then V = W .
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§2. Weyl’s Theorem

Proof of Weyl’s Theorem, char k = 0
H k [Mn,d ] = ⊕Vi where Vi is finite-dimensional, irreducible
GLd -module

U = subgroup of GLd consisting of upper triangular matrices with 1’s
on diagonal.
Any irreducible GLd - module is linear span of all the g ∗ vo where
g ∈ GLd and vo is a highest weight vector.
Have H k [Mn,d ]U ⊂ H k [Mn,n ]U ⊂ (GLd ∗H k [Mn,n ])U .
Conclude that GLd ∗ H k [Mn,n ] = H k [Mn,n ].
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§4. Counter-examples

Finding counter-examples

If GLd ∗ H k [Mn,n ] = H k [Mn,d ] for all d , then there is a positive integer
N so that H k [Mn,d ] is generated by polynomials of degree ≤ N for all
d .

Thus, if the maximal degree of the generators for H k [Mn,d ] increases
with d, then GLd ∗ H k [Mn,n ] * H k [Mn,d ] when d is suffi ciently large.
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§4. Counter-examples

Finite groups

Example: Z2

Theorem (Richman, 1996). H finite, char k = p, p divides |H |, then
every set of k-algebra generators for H k [Mn,d ] contains a generator of
degree d(p − 1)/(p|H |−1 − 1)
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§5. Main Theorem

p−root closure
Definition. Let char k = p > 0 and let R and S be commutative k -
algebras with R ⊂ S . We say that S is contained in the p - root
closure of R if for every s ∈ S , there is a non- negative integer m so
that sp

m ∈ R.

Main Theorem. H closed subgroup of GLn . Then H k [Mn,d ] is
contained in the p - root closure of GLd ∗ H k [Mn,n ]. (If p = 0, have
equality.)
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§5. Main Theorem

Complete reducibility, char k = p > 0

G reductive, U maximal unipotent subgroup

do not have compete reducibility; char k = 2, V =< v ,w >,
G = GL2, look at S2(V )
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§5. Main Theorem

Integral extensions

Definition. A commutative k-algebra, G linear algebraic group with
identity e. A rational action of G on A is given by a mapping
G × A→ A, denoted by (g , a)→ ga so that: (i) g(gá) = (gg )́a and
ea = a for all g , g´∈ G , a ∈ A; (ii) the mapping a→ ga is a k-algebra
automorphism for all g ∈ G ; (iii) every element in A is contained in a
finite-dimensional subspace of A which is invariant under G and on
which G acts by a rational representation.

Theorem. G reductive, A commutative k-algebra on which G acts
rationally. Then A is integral over G ·AU , smallest G -invariant algebra
containing AU .
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§5. Main Theorem

Proof of Main Theorem

U ⊂ GLd , upper triangular matrices with 1’s on diagonal:
k [Mn,d ]U ⊂ k [Mn,n ]

H k [Mn,d ] is integral over GLd ∗ H k [Mn,n ]U
Separating orbits (Draisma, Kemper, Wehlau): let x , y ∈ Mn,d . If
there is an F ∈H k [Mn,d ] with F (x) 6= F (y), then there is an
Fo ∈ GLd ∗H k [Mn,n ] with Fo (x) 6= Fo (y).
(van der Kallen). Suppose that char k = p > 0. Let X and Y be affi ne
varieties and let f : X → Y be a proper bijective morphism. Then k [X ]
is contained in the p-root closure of k [Y ].
Put X = SpecH k [Mn,d ], Y = SpecGLd ∗ H k [Mn,n ]U
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§6. More examples

Finite groups

char k = 0 or char k = p where p - |H | (non-modular case)

Theorem (Losik, Malik, Popov) H k [Mn,d ] is the integral closure of
GLd ∗ H k [Mn,1 ] in its quotient field
char k = p, p divides |H | (modular case)
Theorem. H k [Mn,d ] is contained in the p - root closure of GLd ∗
H k [Mn,1 ].
Problem 1: Describe smallest pth power that works.
Problem 2: Explain Richman’s theorem
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§6. More examples

Classical groups

classical groups: SLn , On , Sp2n

invariants for char k = p > 0 same as for char k = 0 (Igusa, Rota, De
Concini, Procesi)
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§7. Connections to representation theory

Three related problems

When is GLd ∗ H k [Mn,n ] = H k [Mn,d ]?

Why are the invariants of the classical groups the same in all
characteristics?
Why is Richman’s theorem true?
Answers (?): lie in the study of the representation of GLd on H k [Mn,d ].
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§7. Connections to representation theory

Graded algebra

Can construct a graded algebra, gr(H k [Mn,d ]). There is an GLd -
equivariant algebra monomorphism Φ : gr(H k [Mn,d ])→ ⊕Vi where
the Vi are Schur modules.

Any Schur module has unique (up to scalar) highest weight vector.
In the case of H k [Mn,d ], these highest weight vectors are all in
H k [Mn,n ].
But, in general, Vi is not the linear span of the g ∗ vo where vo is a
highest weight vector.
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§7. Connections to representation theory

Three conditions

By restriction, get algebra monomorphism Φ́ : gr(GLd ∗
H k [Mn,d ])→ ⊕Vi

(C1) Φ́ is surjective
(C2) gr(GLd ∗ H k [Mn,d ]) has a good GLd - filtration.
(C3) GLd ∗ H k [Mn,n ] = H k [Mn,d ]
(C1) if and only if (C2).
(C2) implies (C3)
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§7. Connections to representation theory

Three conditions

Theorem. U = maximal unipotent subgroup of GLd consisting of
upper triangular matrices with 1’s on diagonal, T = diagonal matrices.
Suppose that H k [Mn,d ]U = k [a1, . . . , ar ] with ai having T -weight vi .
If Schur module with highest weight vi is irreducible for i = 1, . . . , r ,
then Φ́ is surjective and GLd ∗ H k [Mn,n ] = H k [Mn,d ].

Examples: classical groups

Grosshans (West Chester University) (Institute) Vector invariants 06/10 22 / 30



§7. Connections to representation theory

Three conditions

Theorem. U = maximal unipotent subgroup of GLd consisting of
upper triangular matrices with 1’s on diagonal, T = diagonal matrices.
Suppose that H k [Mn,d ]U = k [a1, . . . , ar ] with ai having T -weight vi .
If Schur module with highest weight vi is irreducible for i = 1, . . . , r ,
then Φ́ is surjective and GLd ∗ H k [Mn,n ] = H k [Mn,d ].
Examples: classical groups

Grosshans (West Chester University) (Institute) Vector invariants 06/10 22 / 30



References

References

C. De Concini, C. Procesi, A characteristic-free approach to invariant
theory, Advances in Math. 21 (1976), no.3, 330-354.

M. Domokos, Matrix invariants and the failure of Weyl’s theorem.
Polynomial identities and combinatorial methods (Pantelleria, 2001),
215—236, Lecture Notes in Pure and Appl. Math., 235, Dekker, New
York, 2003.
J. Draisma, G. Kemper, D. Wehlau, Polarization of separating
invariants, Canad. J. Math. 60 (2008), no. 3, 556—571.
F. Knop, On Noether’s and Weyl’s bound in positive characteristic.
Invariant theory in all characteristics, 175-188, CRM Proc. Lecture
Notes, 35, Amer. Math. Soc., Providence, RI, 2004.
M. Losik, P.W. Michor, V.L. Popov, On polarizations in invariant
theory, J. Algebra 301 (2006), no. 1, 406 - 424.

Grosshans (West Chester University) (Institute) Vector invariants 06/10 23 / 30



References

References

C. De Concini, C. Procesi, A characteristic-free approach to invariant
theory, Advances in Math. 21 (1976), no.3, 330-354.
M. Domokos, Matrix invariants and the failure of Weyl’s theorem.
Polynomial identities and combinatorial methods (Pantelleria, 2001),
215—236, Lecture Notes in Pure and Appl. Math., 235, Dekker, New
York, 2003.

J. Draisma, G. Kemper, D. Wehlau, Polarization of separating
invariants, Canad. J. Math. 60 (2008), no. 3, 556—571.
F. Knop, On Noether’s and Weyl’s bound in positive characteristic.
Invariant theory in all characteristics, 175-188, CRM Proc. Lecture
Notes, 35, Amer. Math. Soc., Providence, RI, 2004.
M. Losik, P.W. Michor, V.L. Popov, On polarizations in invariant
theory, J. Algebra 301 (2006), no. 1, 406 - 424.

Grosshans (West Chester University) (Institute) Vector invariants 06/10 23 / 30



References

References

C. De Concini, C. Procesi, A characteristic-free approach to invariant
theory, Advances in Math. 21 (1976), no.3, 330-354.
M. Domokos, Matrix invariants and the failure of Weyl’s theorem.
Polynomial identities and combinatorial methods (Pantelleria, 2001),
215—236, Lecture Notes in Pure and Appl. Math., 235, Dekker, New
York, 2003.
J. Draisma, G. Kemper, D. Wehlau, Polarization of separating
invariants, Canad. J. Math. 60 (2008), no. 3, 556—571.

F. Knop, On Noether’s and Weyl’s bound in positive characteristic.
Invariant theory in all characteristics, 175-188, CRM Proc. Lecture
Notes, 35, Amer. Math. Soc., Providence, RI, 2004.
M. Losik, P.W. Michor, V.L. Popov, On polarizations in invariant
theory, J. Algebra 301 (2006), no. 1, 406 - 424.

Grosshans (West Chester University) (Institute) Vector invariants 06/10 23 / 30



References

References

C. De Concini, C. Procesi, A characteristic-free approach to invariant
theory, Advances in Math. 21 (1976), no.3, 330-354.
M. Domokos, Matrix invariants and the failure of Weyl’s theorem.
Polynomial identities and combinatorial methods (Pantelleria, 2001),
215—236, Lecture Notes in Pure and Appl. Math., 235, Dekker, New
York, 2003.
J. Draisma, G. Kemper, D. Wehlau, Polarization of separating
invariants, Canad. J. Math. 60 (2008), no. 3, 556—571.
F. Knop, On Noether’s and Weyl’s bound in positive characteristic.
Invariant theory in all characteristics, 175-188, CRM Proc. Lecture
Notes, 35, Amer. Math. Soc., Providence, RI, 2004.

M. Losik, P.W. Michor, V.L. Popov, On polarizations in invariant
theory, J. Algebra 301 (2006), no. 1, 406 - 424.

Grosshans (West Chester University) (Institute) Vector invariants 06/10 23 / 30



References

References

C. De Concini, C. Procesi, A characteristic-free approach to invariant
theory, Advances in Math. 21 (1976), no.3, 330-354.
M. Domokos, Matrix invariants and the failure of Weyl’s theorem.
Polynomial identities and combinatorial methods (Pantelleria, 2001),
215—236, Lecture Notes in Pure and Appl. Math., 235, Dekker, New
York, 2003.
J. Draisma, G. Kemper, D. Wehlau, Polarization of separating
invariants, Canad. J. Math. 60 (2008), no. 3, 556—571.
F. Knop, On Noether’s and Weyl’s bound in positive characteristic.
Invariant theory in all characteristics, 175-188, CRM Proc. Lecture
Notes, 35, Amer. Math. Soc., Providence, RI, 2004.
M. Losik, P.W. Michor, V.L. Popov, On polarizations in invariant
theory, J. Algebra 301 (2006), no. 1, 406 - 424.

Grosshans (West Chester University) (Institute) Vector invariants 06/10 23 / 30



References

References

D.R. Richman, The fundamental theorems of vector invariants, Adv. in
Math. 73 (1989), no. 1, 43-78.

D.R. Richman, Invariants of finite groups over fields of characteristic p,
Adv. Math. 124 (1996), no. 1, 25-48.
W. van der Kallen,
http://www.math.uu.nl/people/vdkallen/errbmod.pdf
H. Weyl, The Classical Groups. Princeton University Press, Princeton,
NJ, 1946.

Grosshans (West Chester University) (Institute) Vector invariants 06/10 24 / 30



References

References

D.R. Richman, The fundamental theorems of vector invariants, Adv. in
Math. 73 (1989), no. 1, 43-78.
D.R. Richman, Invariants of finite groups over fields of characteristic p,
Adv. Math. 124 (1996), no. 1, 25-48.

W. van der Kallen,
http://www.math.uu.nl/people/vdkallen/errbmod.pdf
H. Weyl, The Classical Groups. Princeton University Press, Princeton,
NJ, 1946.

Grosshans (West Chester University) (Institute) Vector invariants 06/10 24 / 30



References

References

D.R. Richman, The fundamental theorems of vector invariants, Adv. in
Math. 73 (1989), no. 1, 43-78.
D.R. Richman, Invariants of finite groups over fields of characteristic p,
Adv. Math. 124 (1996), no. 1, 25-48.
W. van der Kallen,
http://www.math.uu.nl/people/vdkallen/errbmod.pdf

H. Weyl, The Classical Groups. Princeton University Press, Princeton,
NJ, 1946.

Grosshans (West Chester University) (Institute) Vector invariants 06/10 24 / 30



References

References

D.R. Richman, The fundamental theorems of vector invariants, Adv. in
Math. 73 (1989), no. 1, 43-78.
D.R. Richman, Invariants of finite groups over fields of characteristic p,
Adv. Math. 124 (1996), no. 1, 25-48.
W. van der Kallen,
http://www.math.uu.nl/people/vdkallen/errbmod.pdf
H. Weyl, The Classical Groups. Princeton University Press, Princeton,
NJ, 1946.

Grosshans (West Chester University) (Institute) Vector invariants 06/10 24 / 30



Slides - Beamer

This document illustrates the appearance of a presentation created
with the shell Slides - Beamer.
The LATEX Beamer document class produces presentations, handouts,
and transparency slides as typeset PDF files.

DVI output is not available.

The class provides

Control of layout, color, and fonts
A variety of list and list display mechanisms
Dynamic transitions between slides
Presentations containing text, mathematics, graphics, and animations

A single document file contains an entire Beamer presentation.

Each slide in the presentation is created inside a frame environment.

To produce a sample presentation in SWP or SW, typeset this shell
document with pdfLATEX .
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Beamer Files

The document class base file for this shell is beamer.cls.

To see the available class options, choose Typeset, choose Options
and Packages, select the Class Options tab, and then click the Modify
button.

This shell specifies showing all notes but otherwise uses the default
class options.

The typesetting specification for this shell document uses these
options and packages with the defaults indicated:

Options and Packages Defaults
Document class options Show notes
Packages:
hyperref Standard
mathpazo None
multimedia None
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Using This Shell

The front matter of this shell has a number of sample entries that you
should replace with your own.

Replace the body of this document with your own text. To start with
a blank document, delete all of the text in this document.

Changes to the typeset format of this shell and its associated LATEX
formatting file (beamer.cls) are not supported by MacKichan
Software, Inc. If you want to make such changes, please consult the
LATEX manuals or a local LATEX expert.

If you modify this document and export it as “Slides - Beamer.shl” in
the Shells\Other\SW directory, it will become your new Slides -
Beamer shell.
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What is Beamer?

Beamer is a LATEX document class that produces beautiful pdfLATEX
presentations and transparency slides.

Beamer presentations feature

pdfLATEX output

Global and local control of layout, color, and fonts
List items that can appear one at a time
Overlays and dynamic transitions between slides
Standard LATEX constructs

Typeset text, mathematics −b±
√
b2−4ac
2a , and graphics

To produce a sample presentation in SWP or SW, typeset this shell
document with pdfLATEX .
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Creating frames

All the information in a Beamer presentation is contained in frames.

Each frame corresponds to a single presentation slide.

To create frames in a Beamer document,

1 Apply a frame fragment:

The Frame with title and subtitle fragment starts and ends a new
frame and includes a title and subtitle.
The Frame with title fragment starts and ends a new frame and
includes a title.
The Frame fragment starts and ends a new frame.

2 Place the text for the frame between the BeginFrame and EndFrame
fields.

3 Enter the frame title and subtitle.
If you used the Frame fragment, apply the Frame title and Frame
subtitle text tags as necessary.
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Learn more about Beamer

This shell and the associated fragments provide basic support for
Beamer in SWP and SW.

To learn more about Beamer, see
SWSamples/PackageSample-beamer.tex in your program installation.

For complete information, read the BeamerUserGuide.pdf manual
found via a link at the end of
SWSamples/PackageSample-beamer.tex.

For support, contact support@mackichan.com.
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