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Introduction

Let V be a simple vertex operator algebra satisfying certain
regularity conditions with irreducible modules Vγ . Define

Fγ(τ) = tr |VγqL0−c/24 .

Then F =
∑

Fγe
γ is a modular form for the Weil representation

of SL2(Z).

Borcherds’ singular theta correspondence maps modular forms
for the Weil representation of SL2(Z) to automorphic forms on
orthogonal groups.
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The Weil representation

Let D be a discriminant form of even signature with quadratic
form γ 7→ γ2/2. The Weil representation of Γ = SL2(Z) on C[D]
is defined by

ρD(T ) eγ = e(−γ2/2) eγ

ρD(S) eγ =
e(sign(D)/8)√

|D|

∑
β∈D

e(γβ) eβ

where S =
(

0 −1

1 0

)
and T =

(
1 1
0 1

)
are the standard generators

of Γ.
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The Weil representation

Theorem

Let M =
(
a b
c d

)
∈ Γ. Then

ρD(M)eγ = ξ

√
|Dc |√
|D|

∑
β∈Dc∗

e(−aβ2
c/2)e(−bβγ)e(−bdγ2/2)edγ+β

with ξ = e(sign(D)/4)
∏
ξp.
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The Weil representation

Let F (τ) =
∑

γ∈D Fγ(τ)eγ be a holomorphic function on the
upper halfplane with values in C[D] and k an integer. Then F is
a modular form for ρD of weight k if

F (Mτ) = (cτ + d)kρD(M)F (τ)

for all M =
(
a b
c d

)
∈ Γ and F is meromorphic at i∞.
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The Weil representation

Example

Let L be a positive definite even lattice of even rank 2k . For
γ ∈ DL define

θγ(τ) =
∑

α∈γ+L

qα
2/2 .

Then
θ(τ) =

∑
γ∈DL

θγ(τ)eγ

is a modular form for the dual Weil representation ρDL
of weight k

which is holomorphic at i∞.
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Induction from congruence subgroups

Let D be a discriminant form of even signature. The level of D is
the smallest positive integer k such that kγ2/2 = 0 mod 1 for all
γ ∈ D. Suppose the level of D divides N. Let M =

(
a b
c d

)
∈ Γ0(N).

Then the formula for ρD gives

ρD(M)eγ =

(
a

|D|

)
e
(
(a− 1) oddity(D)/8

)
e(−bdγ2/2) edγ .
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Induction from congruence subgroups

Theorem

Let D be a discriminant form of even signature and level dividing
N.

Let f be a scalar valued modular form for Γ0(N) of weight k and
character χD and let H be an isotropic subset of D which is
invariant under (Z/NZ)∗ as a set. Then

F Γ0(N),f ,H =
∑

M∈Γ0(N)\Γ

∑
γ∈H

f |M ρD(M−1)eγ

is modular form for ρD of weight k .
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Induction from congruence subgroups

Let f be a scalar valued modular form on Γ1(N) of weight k and
character χγ . Then

F Γ1(N),f ,γ =
∑

M∈Γ1(N)\Γ

f |M ρD(M−1)eγ

is modular form for ρD of weight k .

Every modular form for Weil representation can be obtained as a
linear combination of liftings from Γ1(N).
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Induction from congruence subgroups

The Fourier expansions of the inductions can be calculated
explicitly using the above formula for Weil representation.
For Γ1(N) we find

Theorem

The function F Γ1(N),f ,γ can be written as a sum
∑

Fs over the
cusps of Γ1(N) where

Fs = ξ(M−1)

√
|Dc |√
|D|

∑
µ∈aγ+Dc∗

e(d(µ− aγ)2
c/2)e(bµγ)

e(−abγ2/2) t gmt,jµ

{
eµ + (−1)ke(sign(D)/4)e−µ

}
if N > 2 and s is regular and similarly in the other cases.
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Induction from isotropic subgroups

Let D be a discriminant form of even signature. Let H be an
isotropic subgroup of D and H⊥ the orthogonal complement of
H in D. Then DH = H⊥/H is a discriminant form. Let
FDH

=
∑

γ∈DH
FDH ,γ e

γ be a modular form for ρDH
. Define

F =
∑
γ∈H⊥

FDH ,γ+H eγ .

Then

Theorem

F is a modular form for ρD .
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Discriminant forms of squarefree level

Theorem

Let D be a discriminant form of squarefree level N and
F =

∑
γ∈D Fγe

γ a modular form for ρD which is invariant under
Aut(D). Then the complex vector space W spanned by the
components Fγ , γ ∈ D is generated by the functions F0|M ,
M ∈ Γ.
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Discriminant forms of squarefree level

Theorem

Let D be a discriminant form of squarefree level N and Ik the set
of isotropic elements of order k . Let F =

∑
γ∈D Fγe

γ be a modular
form for ρD which is invariant under Aut(D). Let NR be the
product over the primes with nonvanishing Ip. For k|NR define
Fk = Fγ where γ is any element in Ik . Then the functions Fk span
the subspace W0 of W with T -eigenvalue 0. Define

Φ : W0 −→ W0

f 7−→ 0-component of F Γ0(N),f ,0 .
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Discriminant forms of squarefree level

Then
Φ(Fk) =

∑
j |NR

ajkFj

with

ajk =
N

|D|
|Ij |

∑
c|(N/j ,N/k)

|Dc |
c

.

The matrix A = (ajk) has determinant

det(A) =

(
N

|D|

)σ(NR)
( ∑

d |N/NR

|Dd |
d

)σ(NR) ∏
d |NR

|Id |
∏
d |NR

|Dd |
d

.

In particular Φ is invertible.
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Discriminant forms of squarefree level

Corollary

Let D be a discriminant form of squarefree level N and F a
modular form for ρD which is invariant under Aut(D). Then
F = F Γ0(N),f ,0 for a suitable modular form on Γ0(N) with
character χD .
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Applications

1. Let N be the Niemeier lattice with root system E 3
8 and g be a

permutation of the three E8-components of order 3. Then
Ng ∼=

√
3E8 and Ng⊥ ∼= A2 ⊗ E8. The theta function θNg⊥ defines

a modular form for the discriminant form of Ng . This function is
invariant under Aut(Ng ) because the centralizer of g in Aut(N)
induces the full automorphism group of Ng . Let L = Ng ⊕

(−2 3
3 0

)
.

Then θNg⊥ induces a modular form on L. Denote the quotient of
this form by the invariant 3∆ by Fθ

Ng⊥/3∆. Define ηg (τ) = η(3τ)8.
Then

F = Fθ
Ng⊥/3∆ + 1

3 F Γ0(9),1/ηg ,0

is a modular form for the Weil representation of L⊕ II1,1 with
nonnegative integral coefficients, reflective poles and [F0](0) = 8.
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Applications

The theta lift of F has singular weight and is given by

e((ρ,Z ))
∏
α∈L′+

(
1− e((α,Z ))

)[Fα+L](−α2/2)

=
∑
w∈W

det(w) e((wρ,Z ))
∏
n>0

(
1− e((3nwρ,Z ))

)8
.

This is the denominator identity of a generalized Kac-Moody
algebra whose real simple roots are the simple roots of W and
imaginary simple roots are the positive multiples of 3ρ with
multiplicity 8.
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Applications

2. Let N be the Niemeier lattice with root system D2
12. Define

g ∈ Aut(N) by g(x , y) = (y , x). Then Ng ∼= Ng⊥ ∼=
√

2D+
12. The

theta function θNg⊥ defines a modular form for the discriminant
form of Ng . This function is again invariant under Aut(Ng )
because C (g) induces Aut(Ng ). The lattice Ng contains a sub-
lattice K ∼=

√
2D12 of genus II12,0(2−10

II 4−2
II ). Then H = Ng/K is

an isotropic subgroup of DK . The function θNg⊥/2∆ induces a
modular form Fθ

Ng⊥/2∆ for the Weil representation of K . Define

ηg (τ) = η(2τ)12 and

F = Fθ
Ng⊥/2∆ + 1

2 F Γ0(4),1/ηg ,0 −
1
4 F Γ0(4),1/ηg ,H .
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Applications

The elements of norm 1/2 mod 1 in DK decompose into 3 orbits
under Aut(K ) of length 132, 1848, 132. The components of F are
given by

F0 = q−1 + 12 + 300q + 5792q2 + 84186q3 + 949920q4 + . . .

and

Fγ = 12 + 288q + 5792q2 + 84096q3 + 949920q4 + . . .

if γ ∈ D2
K\{0},

Fγ = 4 + 224q + 5344q2 + 81792q3 + 939232q4 + . . .

if γ2/2 = 0 mod 1 and γ 6∈ D2
K ,
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Applications

Fγ = q−1/2 + 44q1/2 + 1242q3/2 + 22216q5/2 + . . .

if γ2/2 = 1/2 mod 1 and γ is in one of the orbits of length 132,

Fγ = 32q1/2 + 1152q3/2 + 21696q5/2 + 284928q7/2 + . . .

if γ2/2 = 1/2 mod 1 and γ is in the orbit of length 1848,

Fγ = q−1/4 + 90q3/4 + 2535q7/4 + 42614q11/4 + . . .

if γ2/2 = 1/4 mod 1 and

Fγ = 12q1/4 + 520q5/4 + 10908q9/4 + 153960q13/4 + . . .

if γ2/2 = 3/4 mod 1.
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Applications

Let L = K ⊕ II 1,1 and M = L⊕ II 1,1. Then F induces a modular
form for DM . The theta lift Ψ of F is a holomorphic automorpic
form of singular weight. The level one expansion of Ψ is given by

e((ρ,Z ))
∏
α∈L′+

(
1− e((α,Z ))

)[Fα+L](−α2/2)

=
∑
w∈W

det(w) e((wρ,Z ))
∏
n>0

(
1− e((2nwρ,Z ))

)12
.

This is the denominator identity of a generalized Kac-Moody
algebra whose simple roots and multiplicities are explicitly known.
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Applications

3. Let Λ be the Leech lattice and g ∈ Aut(Λ) of cycle shape 3.21.
Define

L = Λg ⊕
√

7
(−2 3

3 0

)
and M = L⊕ II 1,1. Then M has genus II 4,2(3+29−17+3). Let

Λg ,3 = Λg3 ∩ Λg⊥ ∼= ( 2 1
1 4 )⊗ A2 .

Let ηg (τ) = η(3τ)η(21τ) and h(τ) = ηg (τ/3).
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Applications

Then

F = 1
3 F Γ0(63),1/ηg ,0 + 1

12 F Γ0(63),θΛg,3/ηg3 ,D21

+ 1
216

∑
γ∈γ1+D21

F Γ1(63),1/h ,γ

is a modular form for the Weil representation of M ′/M with
nonnegative integral coefficients, reflective poles and [F0](0) = 2.
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Applications

The theta lift of F has singular weight and is given by

e((ρ,Z ))
∏
α∈L′+

(
1− e((α,Z ))

)[Fα+L](−α2/2)

=
∑
w∈W

det(w) ηg ((wρ,Z )) .

This is the denominator identity of a generalized Kac-Moody
algebra whose simple roots and multiplicities are explicitly known.
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Applications

4. The fake monster algebra G is a generalized Kac-Moody algebra
acted on by Co0.

Borcherds’ conjecture (1995)

The twisted denominator identities of G under Co0 are
automorphic forms of singular weight on orthogonal groups.

The above methods can be used to give a complete proof of this
conjecture.
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