Fourieranalysis, Übungsblatt 5

Abgabe bis Dienstag, den 08.05.2007, 13:15 Uhr

Aufgabe 1 (6 Punkte)

Sei $f:(0,2\pi)\to\mathbb{R}$ definiert durch $f(x)=\pi-x$ für alle $x\in(0,2\pi)$ und

$$f_n:(0,2\pi)\to\mathbb{R},\quad x\mapsto 2\sum_{k=1}^n\frac{\sin(kx)}{k}.$$

Dann konvergiert $(f_n)_{n\in\mathbb{N}}$ punktweise gegen f. Ist $n\in\mathbb{N}$, so gilt wegen $f(x)\to\pi$ und $f_n(x)\to f_n(0)=0$ für $x\to 0$ dann $f_n(x)< f(x)$ in einem geeigneten Intervall $(0,\varepsilon_n)$. Der Gibbs-Effekt beschreibt das Phänomen, daß es neben diesem Verhalten auch ein »Überschießen« der Fourierreihen nach oben gibt, das heißt, es gibt eine Folge $(x_n)_{n\in\mathbb{N}}$ mit $x_n\downarrow 0$ für $n\to\infty$, aber $f_n(x_n)-f(x_n)\to C>0$ für $n\to\infty$. Weisen Sie dieses Phänomen hier nach. Betrachten Sie dazu die Folge $(x_n)_{n\in\mathbb{N}}$ mit $x_n=\pi(n+\frac{1}{2})^{-1}$ für alle $n\in\mathbb{N}$, und zeigen Sie

$$\lim_{n \to \infty} (f_n - f)(x_n) = \lim_{n \to \infty} \int_0^{x_n} \frac{\sin((n + \frac{1}{2})x)}{\sin \frac{x}{2}} dx - \pi = 2 \int_0^{\pi} \frac{\sin t}{t} dt - \pi.$$

Hinweis: Beginnen Sie mit dem Nachweis von $(f_n - f)' = D_n$, und nutzen Sie die aus der Vorlesung bekannten Eigenschaften des Dirichlet-Kerns aus; die zweite Gleichheit beweisen Sie am besten von rechts nach links durch Substitution und Grenzwertbetrachtung.

Aufgabe 2 (2+2+4 Punkte)

Für N>0 sei $H_N=\{(f(k))_{k=0}^{N-1}\,|\,f(0),\ldots,f(N-1)\in\mathbb{C}\}$, und auf H_N sei ein Skalarprodukt definiert durch

$$\left\langle (f(k))_{k=0}^{N-1}, (g(k))_{k=0}^{N-1} \right\rangle = \sum_{k=0}^{N-1} f(k) \overline{g(k)}.$$

Weiter definiert man $e_0, \ldots, e_{N-1} \in H$ durch

$$e_n(k) = \frac{e^{2\pi i nk/N}}{\sqrt{N}}$$

für $n, k \in \{0, ..., N-1\}$ und führt die *endliche Fouriertransformation* $\mathcal{F}_N : H_N \to H_N$ über

$$\mathcal{F}_N(f)(k) := \hat{f}(k) := \langle f, e_k \rangle$$

ein. Für $f,g \in H_N$ definiert man $f * g \in H_N$ durch

$$(f * g)(k) = \sum_{n=0}^{N-1} f(n)g(k-n)$$

für alle $k \in \{0, ..., N-1\}$ (dabei rechnet man in den Argumenten von Elementen von H_N modulo N, insbesondere versteht man in obiger Formel unter g(k-n) für $0 \le k < n$ dasselbe wie g(k-n+N)). Für $k \in \mathbb{Z}$ wird der Translationsoperator $T_k : H_N \to H_N$ definiert durch

$$(T_k f)(n) = f(n-k)$$

für alle $n \in \{0, ..., N-1\}$.

- a) Zeigen Sie, daß e_0, \ldots, e_{N-1} eine Orthonormalbasis von H bilden. (Diese Basis wird *Fourierbasis* von H genannt.)
- b) Zeigen Sie, daß

$$(f * g)^{\hat{}}(k) = \sqrt{N} \cdot \hat{f}(k)\hat{g}(k)$$

für alle $k \in \{0, \dots, N-1\}$ gilt.

c) Sei $S: H_N \to H_N$ linear. Zeigen Sie, daß $S \circ T_k = T_k \circ S$ für alle $k \in \{0, \ldots, N-1\}$ genau dann gilt, wenn S diagonal in der Fourierbasis ist (das heißt die Abbildungsmatrix von S bezüglich der Fourierbasis eine Diagonalmatrix ist). Hinweis: Zeigen Sie, daß im Falle $S \circ T_k = T_k \circ S$ stets $S(f) = f * S(\hat{e}_0)$ gilt; dabei kann eine zu 2.9(b) ähnliche Darstellung von f als Linearkombination von $\hat{e}_0, \ldots, \hat{e}_{N-1}$ hilfreich sein.