Nachtrag zur Vorlesung: Bei Bemerkung 1.3 b) wurde folgende Aussage benötigt: Die Inklusion

$${x \in C^1[0,1] : x(0) = x'(0) = 0} \subset {x \in C[0,1] : x(0) = 0}$$

ist dicht bezüglich der Supremumsnorm, d.h., zu jedem $\epsilon > 0$ und $x \in C[0,1]$ mit x(0) = 0 existiert $y \in C^1[0,1]$ mit y(0) = y'(0) = 0 und $\sup_{0 \le t \le 1} |x(t) - y(t)| < \epsilon$.

Beweis: Nach dem Weierstraß'schen Approximationssatz bilden die Polynomfunktionen einen dichten Teilraum von C[0,1]. Also gibt es $y_1 \in C^1[0,1]$ mit $||y_1-x|| < \epsilon/2$. Speziell gilt $|y_1(0)| < \epsilon/2$. Da y_1 stetig ist, gibt es $\delta > 0$ so, daß $|y_1(t)| < \epsilon/2$ für alle $0 \le t \le \delta$.

Wähle $h \in C^1[0,1]$ mit $0 \le h(t) \le 1$, für alle $t \in [0,1]$, mit folgenden weiteren Eigenschaften: $h|_{[0,\delta/2]} = 0$, $h|_{[\delta,1]} = 1$. (Die Existenz von Funktionen dieser Art wird üblicherweise in den Grundvorlesungen behandelt; siehe auch [Rudin, Functional Analysis, 1.46].)

Dann ist $y_2 = hy_1 \in C^1[0,1]$, mit $y_2(0) = y_2'(0) = 0$. Zudem gilt für $t \in [0,1]$:

- Falls $0 \le t \le \delta/2$, so ist $|y_1(t) y_2(t)| = |y_1(t)| < \epsilon/2$.
- Falls $\delta/2 \le t \le \delta$, so gilt $|y_1(t) y_2(t)| = |(1 h(t))||y_1(t)|| < \epsilon/2$.
- Falls $t > \delta$, so gilt $|y_1(t) y_2(t)| = 0$.

Also $||y_2 - y_1|| < \epsilon/2$, und damit $||y_2 - x|| < \epsilon$.