Funktionalanalysis II, Übungsblatt 4

Abgabe bis Freitag, den 9. Mai 2008, 13:15 Uhr

Aufgabe 14 (10 Punkte)

Es seien X und Y Hilberträume und $T \in \mathcal{L}(X,Y)$. Es seien $(x_i)_{i \in I}$ in X und $(y_j)_{j \in J}$ in Y vollständige Orthonormalsysteme. Wir definieren $||T||_2 := \left(\sum_{i \in I, j \in J} \left| \left(Tx_i, y_j\right) \right|^2 \right)^{1/2}$.

(a) Zeigen Sie:

Der Wert von $\|T\|_2$ ist $\mathit{unabhängig}$ von der Wahl der vollständigen Orthonormalsysteme

(b) Der Operator T wird Hilbert–Schmidt-Operator genannt, wenn $||T||_2 < \infty$. Die Menge aller Hilbert–Schmidt-Operatoren wird mit HS(X,Y) bezeichnet.

Zeigen Sie:

Der Raum HS (X, Y) ist ein *Hilbertraum* mit Skalarprodukt $(T, S) = \sum_{i \in I} (Tx_i, Sx_i)$ für $S, T \in HS(X, Y)$. Es gilt $||T|| \le ||T||_2$, d. h. die Einbettung HS $(X, Y) \hookrightarrow \mathcal{L}(X, Y)$ ist stetig.

(c) Für $x \in X$ und $y \in Y$ sei der lineare Operator $y \otimes x : X \to Y$ definiert durch $(y \otimes x)(z) = (z, x)y$.

Zeigen Sie:

Sind $(x_i)_{i\in I}$ in X bzw. $(y_j)_{j\in J}$ in Y vollständige Orthonormalsysteme, so erhält man durch $(y_j\otimes x_i)_{i\in I,i\in I}$ ein vollständiges Orthonormalsystem von HS (X,Y).

(d) Zeigen Sie:

Hilbert-Schmidt-Operatoren sind kompakt.

(e) Es sei Z ein Hilbertraum.

Zeigen Sie für $T \in HS(X,Y)$ und $S \in \mathcal{L}(Y,Z)$:

$$||ST||_2 \leq ||S|| \, ||T||_2$$

Aufgabe 15 (8 Punkte)

Es sei X ein Hilbertraum und $T \in \mathcal{K}(X)$ sei selbstadjungiert. Die positiven Eigenwerte in ihrer Vielfachheit auftretend seien monoton fallend angeordnet, $\lambda_1 \geqslant \lambda_2 \geqslant \ldots > 0$.

(a) Es sei $\alpha > 0$ und $n \in \mathbb{N}$.

Zeigen Sie die Äquivalenz folgender Aussagen:

- (i) Mindestens *n* Eigenwerte von *T* in ihrer Vielfachheit auftretend sind $\geq \alpha$.
- (ii) Es gibt einen Teilraum Y von X der Dimension n mit:

$$(Tx, x) \geqslant \alpha(x, x) \, \forall x \in Y$$

(b) Der Operator besitze nun in ihrer Vielfachheit auftretend mindestens n positive Eigenwerte. Es sei P die Menge aller Unterräume von Y der Dimension n, für die (Tx, x) > 0 für alle $x \in Y \setminus \{0\}$.

Zeigen Sie:

$$\lambda_n = \sup_{Y \in P} \min_{x \in Y \setminus \{0\}} \frac{(Tx, x)}{(x, x)}$$

Bestimmen Sie, in welchen Fällen das Supremum angenommen wird.

Begründen Sie, weshalb das Minimum angenommen wird.

(c) Die Dimension von X sei nun mindestens n. Es sei M die Menge der Unterräume der Dimension n-1.

Zeigen Sie:

Falls

$$\min_{Z \in M} \max_{x \in Z^{\perp} \setminus \{0\}} \frac{(Tx, x)}{(x, x)} > 0$$

ist, so ist dieser Wert λ_n .

Bestimmen Sie, für welche Unterräume Z das Minimum angenommen wird.