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Martin Raum

Within this talk we want to consider the partition function and its representation in
terms of Rademacher’s functions. This provides a possibility to calculate it efficiently
since it takes integral values and hence every approximation which is close enough
yields the knowledge of the exact result.

§ 1 Sketching the proof

We need some preparation to carry out the proof and thus it is a good idea to see
what we are aiming at. The generating function for the partition function p is well
known and equals

F(z) =
∞

∏
m=1

1
1− zm =

∞

∑
n=0

p(n)zn (1)

on the unit disc. By Cauchy’s residue theorem as shown in [Krieg, Analysis IV, p.504,
3.1] we have

p(n) =
1

2πi

∫
C

F(ζ)
ζn+1 dζ,

where C is any contour homotopic to the positively orientated circle of radius e−2π

within the punctured unit disc.

To deduce a converging series from this integral, we have to chose appropriate C’s
and in addition corresponding finite fragmentations of these C’s. Most of the work,
that we have to do, will be dedicated to this problem. A further problem will be the
need for a functional equation for F. We want to treat this first.
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§ 2 A functional equation for F

We recall the functional equation of Dedekind’s η-function for a matrix

M :=
(

a b
c d

)
∈ SL2(Z),

satisfying c > 0. For such a M we have

η(M〈z〉) = ε(a, b, c, d) · (−i(cz + d))
1
2 · η(z)

with

ε(a, b, c, d) = exp
(

πi
(

a + d
12c

+ s(−d, c)
))

and s Dedekind’s sum

s(h, k) =
k−1

∑
n=1

n
k

(
hn
k
−
⌊

hn
k

⌋
− 1

2

)
.

The product expansion of η

η(z) = eπi z
12

∞

∏
n=1

(
1− e2πimz

)
yields

F(e2πiz) = e
πiz
12 · η(z)−1.

We can transport this to a functional equation of F.

(2.1) Theorem
Let z ∈ E with Re(z) > 0 and let k, h, H ∈ N such that (h, k) = 1 and hH ≡
−1(mod k). Define

x = exp
(

2πih
k
− 2πz

k2

)
, x′ = exp

(
2πiH

k
− 2π

z

)
.

Then F satisfies

F(x) = eπis(h,k)
(z

k

) 1
2 exp

( π

12z
− πz

12k2

)
F(x′). �
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Proof
Using the functional equation of η this is a straight forward calculation. Set
τ = (iz/k + h)/k ∈ H and τ′ = M〈τ〉 with M as above. By the last equations
we have

F(e2πiτ) = e
πiτ
12 · η(τ)−1

= e
πiτ
12 · ε(a, b, c, d) · (−i(cτ + d))

1
2 · η(τ′)−1

= F(e2πiτ′) · e
πi(τ−τ′)

12 · ε(a, b, c, d) · (−i(cτ + d))
1
2

= F(e2πiτ′) · eπis(−d,c) · exp
(

πi
12

(
τ − τ′ +

a + d
c

))
· (−i(cτ + d))

1
2 .

We now choose a = H, b = −(hH + 1)/k, c = k and d = −h. Considering det(M) =
H(−h)− (k(−(hH + 1)/k))) = 1 we find M ∈ SL2(Z) as assumed. Then

τ′ =

(
H

iz
k + h

k
− hH + 1

k

)
·
(

k
iz
k + h

k
− h

)−1

=

(
iHz

k − 1
k

)(
iz
k

)−1

=
H
k

+
i
z

,

and we have
(−i(cτ + d))

1
2 = (−i(kτ − h))

1
2

=
(
−i
(

i
z
k

+ h− h
)) 1

2

=
(z

k

) 1
2 and

τ − τ′ +
a + d

c
=

iz/k + h− ikz−1 − H + H − h
k

= i
(

z
k2 −

1
z

)
.

Inserting this into the first equation we have

F(x) = F(e2πiτ) = F(e2πiτ′) · eπis(−d,c) · exp
( π

12z
− πz

12k2

)
·
(z

k

) 1
2 ,

which yields the claim. �
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§ 3 The path of integration

Next we turn to the path of integration. Later we want to apply the biholomorphic
map z 7→ e2πiz from S := {z ∈ H : Re(z) ∈ [0, 1)} to the unit disc. Therefore we will
consider a path of integration from i to i + 1.

Farey fractions

We introduce some subsets of [0, 1] .

(3.1) Definition
For N ∈N we call the set

FN :=
{

k
l

: k, l ∈ n, (k, l) = 1
}

the set of Farey fractions of order N. Here we denote n = {1, . . . n}. We call two
fractions consecutive in FN, iff they are consecutive in FN ⊆ [0, 1] with respect to
their magnitude. �

(3.2) Remarks
(i) Obviously FN ⊆ FN+k for all k ∈N.

(ii) If 0 < a/b < c/d their mediant (a + c)/(b + d) lies between them. This follows
from (a + c)/(b + d)− a/b = (bc− ad)/(b(b + d)) > 0 and c/d− (a + c)/(b +
d) = (bc− ad)/(d(b + d)) > 0. Pay attention not to confuse it with the median
of a list of numbers. �

We want to investigate the set FN+1 \ FN. Consecutive fractions turn out to be the
key.

(3.3) Lemma
Given 0 ≤ a/b < c/d ≤ 1 with bc − ad = 1. Then a/b and c/d are consecutive
fractions in FN if

max(b, d) ≤ N ≤ b + d− 1. �

Proof
The condition bc − ad = 1 yields (a, b) = (c, d) = 1. For max(b, d) ≤ N we see
b, d ∈ N and thus a/b, c/d ∈ FN for those N.
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Now suppose in addition N ≤ b + d− 1 and that there is a fraction h/k ∈ FN such
that a/b < h/k < c/d. It follows bh− ak ≥ 1 and ck− dh ≥ 1. We use bc− ad = 1
and find

b + d > N ≥ k = k(bc− ad) = b(ck− dh) + d(bh− ak) ≥ b + d.

This is a contradiction and hence a/b and c/d are consecutive in FN. �

We use the last equation to deduce a further proposition.

(3.4) Proposition
Given 0 ≤ a/b < c/d ≤ 1 with bc− ad = 1. Set h := a + b and k := c + d. Then the
mediant h/k of a/b and c/d satisfies

bh− ak = 1, ck− dh = 1.

In particular (h, k) = 1. �

Proof
Since a/b < (a + c)/(b + d) < c/d we see bh− ak, ck− dh ≥ 1. Then

k = b(ck− dh) + d(bh− ak) ≥ b + d (2)

as shown in the proof of (3.3) enforces bh− ak = ck− dh = 1 to obtain k = b + d. �

Now we are able to prove the desired result. It is

(3.5) Theorem
We have FN ⊆ FN+1. Each fraction in FN+1 \ FN is the mediant of its neighbours
which are consecutive in FN. Moreover given consecutive fractions a/b and c/d in
FN we have bc− ad = 1. �

Proof
We use induction on n, where the claim is clear for {0/1, 1/1} = F1 ⊆ F2 =
{0/1, 1/2, 1/1}.

For the induction step we put together (3.3) and (3.4). Consider consecutive fractions
a/b and c/d in FN for a fixed N. For N + 1 < b + d they will be consecutive in FN+1
by (3.3). Otherwise the mediant h/k is in between a/b and c/d by (3.4). But then
again by (3.3) no further fraction can exist in FN+1 between a/b and h/k or h/k and
c/d since N + 1 = k = b + d < 2b + d = b + k and N + 1 = k = b + d < b + 2d = k + d
respectively. Moreover by (3.4) the fraction h/k satisfies bh− ak = 1 and ck− dh = 1
and this proofs the last claim. �
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Ford circles

To construct our path of integration we will use sections of certain circles, the Ford
circles. This is the reason for which we now study them.

(3.6) Definition
Given a fraction h/k with (h, k) = 1. The Ford circle defined by this fraction is the
circle in the complex plane with radius 1/(2k2) and centre at the point h/k + i/(2k2).
It is denoted by C(h, k). �

(3.7) Remark
The Ford circle C(h, k) is exactly the circle of radius 1/(2k2) in the closed upper half
plan, which has the real line as tangent and touches it in h/k. �

(3.8) Proposition
Two Ford circles C(a, b) and C(c, d) are either tangent to each other or they do not
intersect. They are tangent iff bc − ad = ±1. Thus exactly those Ford circles are
tangent, which correspond to fractions which are consecutive in FN for one N ∈N.�

Proof
The square of the distance of the centre points is

D2 =
( a

b
− c

d

)2
+
(

1
2b2 −

1
2d2

)2

.

The square of the sum of their radii r and R is

(r + R)2 =
(

1
2b2 +

1
2d2

)2

.

Hence the difference yields

D2 − (r + R)2 =
(

ad− bc
bd

)2

+
(

1
2b2 −

1
2d2

)2

−
(

1
2b2 +

1
2d2

)2

=
(ad− bc)2

b2d2 − 4
4b2d2

=
(ad− bc)2 − 1

b2d2 ≥ 0.

The last inequality holds since ad− bc 6= 0 is integral. We now see that the circles
never intersect and they are tangent if, and only if, (ab− bc)2 = 1. �
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Our next question is, where these points of tangency are located. The answer is

(3.9) Lemma
Let a/b < c/d be two consecutive Farey fractions. The point of contact of C(a, b)
with C(c, d) is the point

s =
c
d
− b

d(b2 + d2)
+

i
b2 + d2 .

Moreover, the point of contact s is on the semicircle in the closed upper half plane
whose diameter is the interval [a/b, c/d] . �
Proof
We use the theorem on intersecting lines, Thales’ theorem and the altitude theorem,
already proved in school. The doubtful reader may be referred to [Krieg, Ebene
Geometrie, 2007] for proofs of these theorems in analytic coordinates.

We define x and y in terms of

s =
( c

d
− x
)

+ i
(

1
2d2 − y

)
.

By the theorem on intersecting lines we get

x
c
d −

a
b

intersecting lines
=

1
2d2

1
2b2 + 1

2d2

=
b2

b2 + d2 and

y
1

2d2

intersecting lines
=

1
2d2 − 1

2b2

1
2d2 + 1

2b2

=
b2 − d2

b2 + d2 .

Solving for x and y we have

x = (bc− ad)
b

d(b2 + d2)
=

b
d(b2 + d2)

and

y =
1

2d2
b2 − d2

b2 + d2

and finally inserting this we establish

s =
(

c
d
− b

d(b2 + d2)

)
+ i
(

1
2d2

(
1− b2 − d2

b2 + d2

))
=
(

c
d
− b

d(b2 + d2)

)
+ i
(

1
2d2

b2 + d2 − b2 + d2

b2 + d2

)
=
(

c
d
− b

d(b2 + d2)

)
+ i
(

1
b2 + d2

)
.
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By Thales’ theorem, it now suffices to prove that the triangle ∆(a/b, c/d, s) is right-
angled. To proof this we establish the equation given by Euklid’s altitude theorem.(

Re(s)− a
b

) ( c
d
− Re(s)

)
!= Im(s)2.

This can be verified directly.(
Re(s)− a

b

) ( c
d
− Re(s)

)
=
(

c
d
− b

d(b2 + d2)
− a

b

)(
c
d
− c

d
+

b
d(b2 + d2)

)

=


=1︷ ︸︸ ︷

bc− ad
bd

− b
d(b2 + d2)

 b
d(b2 + d2)

=
1
d

b
d(b2 + d2)

b2 + d2 − b2

b(b2 + d2)
=

1
(b2 + d2)2 = Im(s)2.

�

(3.10) Definition
Fix N ∈ N and let a/b < h/k be consecutive fractions in FN where a/b uniquely
determined by h/k. Then sl(h, k) is the point of tangency of C(a, b) with C(h, k), the
lower point of contact with respect to h/k. Given consecutive fractions h/k < c/d
we define sh(h, k) to be the point of tangency of C(h, k) with C(c, d), the higher point
of contact with respect to h/k. Moreover, if h/k = 0/1 we define sl(h, k) := i and
if h/k = 1/1 we define sh(h, k) = 1 + i. If the referred circle is obvious we write
sl = sl(h, k) and sh = sh(h, k) for better readability. �

A transformation of Ford circles

Later we wish to integrate over Ford circles and their sections. Thus, now, we need
to investigate the effect of some transformations.

(3.11) Lemma
The transformation

t : z 7→ −ik2
(

z− h
k

)
maps the Ford circle C(h, k) onto a circle K of radius 1/2 with centre z0 = 1/2. For
consecutive fractions a/b < h/k and h/k < c/d respectively in FN the points of
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contact of C(a, b) with C(h, k) and of C(h, k) with C(c, d) respectively are mapped to

t(sl) =
k2

k2 + b2 + i
kb

k2 + b2 and

t(sh) =
k2

k2 + d2 − i
kd

k2 + d2 .

Regarding C(0, 1) and C(1, 1) we have

t(sl(0, 1)) = t(sh(1, 1)) = 1.

Moreover the upper arc joining sl and sh maps onto the arc of K which does not
touch the imaginary axis. �
Proof
The translation tra : z 7→ z− h/k maps C(h, k) onto the circle with centre i/(2k2).
Then ro : z 7→ −ik2z rotates the centre to the real axis and changes the radius to 1/2.
Given a/b < h/k < c/d, we verify the equations by (3.9).

ro ◦ tra(sl) = ro ◦ tra
(

k
h
− b

k(b2 + k2)
+

i
b2 + k2

)
= −ik2

((
k
h
− b

k(b2 + k2)
+

i
b2 + k2

)
− h

k

)
= −i

bk
b2 + k2 +

k2

b2 + k2

and analogously

ro ◦ tra(sh) = ro ◦ tra
(

c
d
− k

d(k2 + d2)
+

i
k2 + d2

)
= −ik2

((
c
d
− k

d(k2 + d2)
+

i
k2 + d2

)
− h

k

)
= −ik2 ck(k2 + d2)− k2 − hd(k2 + d2)

kd(k2 + d2)
+

k2

k2 + d2

= −ik2

=1︷ ︸︸ ︷
(ck− hd)(k2 + d2)− k2

kd(k2 + d2)
+

k2

k2 + d2

= −i
k2d2

kd(k2 + d2)
+

k2

k2 + d2

=
k2

k2 + d2 − i
kd

k2 + d2 .
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Two further calculations yield

ro ◦ tra(sl(0, 1)) = ro ◦ tra(i) = −i
(

i− 0
1

)
= 1,

ro ◦ tra(sh(1, 1)) = ro ◦ tra(i + 1) = −i
(

i + 1− 1
1

)
= 1

Finally the last assertion follows from t(h/k) = 0 . �

We will need some estimates, too. They treat sl and sh of the last theorem.

(3.12) Lemma
Let sl, sh and the transformation t as in (3.11). Suppose a/b < h/k and h/k < c/d
respectively are consecutive in FN. Then we have

|t(sl)| =
k√

k2 + b2
, |t(sh)| =

k√
k2 + d2

.

Furthermore, if z is on the chord joining t(sl(h, k)) and t(sh(h, k)) for consecutive
fractions a/b < h/k < c/d or the chord joining t(sh(0, 1)) and t(sl(1, 1)), we have

|z| <
√

2k
N

.

The length of this chord does not exceed 2
√

2k/N . �

Proof
Using the assertions of (3.11), given a/b < h/k and h/k < c/d respectively, we have

|t(sl)|2 =
k4 + k2b2

(k2 + b2)2 =
k2

k2 + b2 and

|t(sh)|2 =
k4 + k2d2

(k2 + d2)2 =
k2

k2 + d2 .

For the second claim, assume z is on the chord joining two points p and q. Then
|z| ≤ max(|p|, |q|) and hence it suffices to proof the claim for z = t(sl(h, k)) and
z = t(sh(h, k)) with a/b < h/k < c/d consecutively in FN and for z = t(sh(0, 1)) and
z = t(sl(1, 1)) respectively. This follows from the equations, we already deduced,
and the following estimates.
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We utilize the inequality relating the arithmetic mean to the root mean square and
exploiting the fact that the fractions are consecutive in FN and thus by (3.3) the
inequalities k + d ≥ N + 1 and k + b ≥ N + 1 respectively hold. We have√

k2 + b2 ≥ k + b√
2
≥ N + 1√

2
>

N√
2

and similarly

√
k2 + d2 ≥ k + d√

2
≥ N + 1√

2
>

N√
2

.

Then the claim follows by the first equations. Finally the chord’s length is less than
|t(sl)|+ |t(sh)| = 2

√
2k/N. �

The path of integration

We are now ready to introduce the path of integration.

(3.13) Definition
Fix N ∈ N and let UN(C(h, k)) be the path starting in sl and ending in sh on the
upper arc of C(h, k), with sl and sh as in (3.10). We set the N-th path of integration
to be

IN :=
⊕

h
k∈FN

UN(C(h, k)),

where the direct sum is taken in order of the magnitude of h/k. �

(3.14) Remark
By (3.9) the path of integration is connected and it is disjoint to the real axis. �

To apply the Cauchy’s residue theorem we will transform the punctured unit disc to
the strip S = {z ∈H : Re(z) ∈ [0, 1)}. We will proof

(3.15) Lemma
The chord between i and i + 1 is homotopic to IN. �

Proof
We use induction on N. For N = 1 we have

I1 = (t ∈ [0, 1] 7→ t
2

+
i
2
(1 +

√
1− t2))

⊕(t ∈ [0, 1] 7→ 1 + t
2

+
i
2
(1 +

√
1− (1− t)2)).
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Thus the convex combination

H : [0, 1]× [0, 1], (λ, t) 7→ λ + (1− λ)I1(t)

is a homotopy of I1 and the chord between i and i + 1.

Next assume IN to be homotopic to the cord between i and 1 + i for a fixed N.
Then it suffices to prove IN+1 to be homotopoic to IN. To do this we investigate
the difference. By (3.5) we see that only finitely many curves are inserted. Namely
suppose a fraction h/k ∈ FN+1 was inserted between a/b, c/d ∈ FN. Then we can
write

UN+1(C(a, b))⊕UN+1(C(h, k))⊕UN+1(C(c, d))

= Rl ⊕UN(C(a, b))⊕Ml ⊕UN+1(C(h, k))⊕Mr ⊕UN(C(c, d))⊕ Rr,

where Rl and Rr either vanish or are rests occurring from further insertions in FN+1
left respectively right to a/b respectively c/d. Moreover Ml is the arc between the
point of contact of C(a, b) with C(c, d) and the point of contact of C(a, b) and C(h, k).
The Mr is defined analogously. Thus Ml ⊕UN+1(C(h, k))⊕Mr is homotopic to the
point curve and applying this construction to every inserted fraction we obtain the
desired homotopy. �

§ 4 Rademacher’s series for p(n)

(4.1) Theorem
If n ∈N the partition function p(n) is represented by the convergent series

p(n) =
1

π
√

2

N

∑
k=1

Ak(n)
√

k
d

dn


sinh

(
π
k

√
2
3

(
n− 1

24

))
√

n− 1
24

+O(N−
1
2 ), where

Ak(n) = ∑
0≤h<k

(h,k)=1

eπis(h,k)−2πinh/k

and s(h, k) is Dedekind’s sum. �

Proof
We have already seen

p(n) =
1

2πi

∫
C

F(ζ)
ζn+1 dζ,
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where C is any contour homotopic in the punctured unit disc to the positively ori-
entated circle of radius e−2π.

By applying the biholomorphic map z 7→ e2πiz we transform S = {z ∈ H : Re(z) ∈
[0, 1)} to the punctured unit disc and the cord between i and 1 + i to the circle of
radius e−2π with positive orientation . Then by (3.15) every IN is an appropriate path
of integration. Summing this up we have

p(n) =
∫
IN

F(e2πiz)(e2πiz)−(n+1)e2πizdz

=
∫
IN

F(e2πiz)(e−2πinz)dz.

We first split the path of integration according to the definition of IN.

p(n) =
N

∑
k=1

∑
0≤h≤k

(h,k)=1

∫
UN(C(h,k))

F(e2πiz)(e−2πinz)dz.

We will calculate each integral separately and introduce error terms. Therefor for
fixed h, k like in the sum we apply the biholomorphic map t−1 : z 7→ h/k + iz/k2

with t : z 7→ −ik2(z − h/k) as in (3.11). We see by this lemma that we have to
calculate ∫

UN(C(h,k))

F(e2πiz)(e−2πinz)dz

=
∫

t(UN(C(h,k)))

F
(

exp
(

2πih
k
− 2πz

k2

))
e−2πinh/ke2πnz/k2 i

k2 dz

= ik−2e−2πinh/k
∫

t(UN(C(h,k)))

e2πnz/k2
F
(

exp
(

2πih
k
− 2πz

k2

))
dz.

We are now ready to apply the functional equation (2.1).

F
(

exp
(

2πih
k
− 2πz

k2

))
= eπis(h,k)k−

1
2 Ψk(z)F

(
exp

(
2πiH

k
− 2π

z

))
, where

Ψk(z) = z
1
2 exp

( π

12z
− πz

12k2

)
and hH ≡ −1 (mod k).
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We define

I1(h, k) :=
∫

t(UN(C(h,k)))

Ψk(z)e2πnz/k2
dz for k ≥ 2,

I2(h, k) :=
∫

t(UN(C(h,k)))

Ψk(z)e2πnz/k2
(

F
(

exp
(

2πiH
k
− 2π

z

))
− 1
)

dz for k ≥ 2.

Now observe that for k = 1 we may chose H = 0 and then the integrand is indepen-
dent of h. Furthermore by (3.11) we see that t(UN(C(1, 1)))⊕ t(UN(C(0, 1))) is the
arc from sl(1, 1) to sh(0, 1) not touching the imaginary axis. Thus for ease of notation
we may define the special case k = 1, too.

I1(0, 1) :=
∫

t(UN(C(1,1)))⊕t(UN(C(0,1)))

Ψk(z)e2πnz/k2
∣∣∣
k=1

dz and

I2(0, 1) :=
∫

t(UN(C(1,1)))⊕t(UN(C(0,1)))

Ψk(z)e2πnz/k2

·
(

F
(

exp
(

2πiH
k
− 2π

z

))
− 1
)∣∣∣∣

k=1,H=0
dz.

If we consider that for k = 1 the additional terms are independent of h, too, we may
combine the cases h = 0 and h = 1 in one expression involving I(0, 1).

p(n) =
N

∑
k=1

∑
0≤h≤k

(h,k)=1

∫
UN(C(h,k))

F(e2πiz)(e−2πinz)dz

=
N

∑
k=1

∑
0≤h≤k

(h,k)=1

ik−2e−2πinh/k
∫

t(UN(C(h,k)))

e2πnz/k2
F
(

exp
(

2πih
k
− 2πz

k2

))
dz

=
N

∑
k=1

∑
0≤h≤k

(h,k)=1

ik−2e−2πinh/k

∫
t(UN(C(h,k)))

e2πnz/k2
eπis(h,k)k−

1
2 Ψk(z)F

(
exp

(
2πiH

k
− 2π

z

))
dz

=
N

∑
k=1

∑
0≤h<k

(h,k)=1

ik−
5
2 eπis(h,k)e−2πinh/k(I1(h, k) + I2(h, k)).
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Note that we have to write 0 ≤ h < k to exclude the case k = 1 = h.

We first deal with I2(h, k) and therefor temporarily fix N. Since the integrand is holo-
morpic on the right half plane, we may change the path of integration t(UN(C(h, k)))
and t(UN(C(1, 1)))⊕ t(UN(C(0, 1))) respectively to the chord between sl(h, k) and
sh(h, k) and the chord joining t(sh(1, 1) and t(sl(0, 1)) respectively as in (3.10). Its
length does not exceed 2

√
2k/N as we proofed in (3.12). On the chord we have

|z| <
√

2k/N. Furthermore, note that Re(1/z) ≥ 1 for any z on the chord, since this
chord is contained in the circle with radius 1/2 and centre 1/2.

We estimate the integrand on the chord.∣∣∣∣Ψk(z)e2πnz/k2
(

F
(

exp
(

2πiH
k
− 2π

z

))
− 1
)∣∣∣∣

= |z| 12 exp
(

π

12
Re
(

1
z

)
− π

12k2 Re(z)
)
· e2πnRe(z)/k2

∣∣∣∣∣ ∞

∑
m=1

p(m)e2πiHm/k−2πm/z

∣∣∣∣∣
≤ |z| 12 exp

(
π

12
Re
(

1
z

))
e2πn/k2

∞

∑
m=1

p(m)e−2πmRe(1/z)

≤ |z| 12 e2πn
∞

∑
m=1

p(m)e−2π(m−1/24)Re(1/z)

≤ |z| 12 e2πn
∞

∑
m=1

p(m)e−2π(m−1/24)

= |z| 12 e2πn
∞

∑
m=1

p(m)e−2π(24m−1)/24

< |z| 12 e2πn
∞

∑
m=1

p(24m− 1)e−2π(24m−1)/24

= |z| 12 e2πn
∞

∑
m=1

p(24m− 1)y(24m−1)

= c|z| 12 ,

where y = e−2π/24 and c is a constant, which is independent of k and which is lower
than infinity since the partition function is a dominating series and |y| < 1 .

Since z is on the chord we have |z| <
√

2k/N. Hence the integrand is bounded by

15



Rademacher’s series for the partition function § 4 Rademacher’s series for p(n)

21/4c(k/N)1/2. Since the chord’s length is less than 2
√

2k/N, we find

|I2(h, k)| < 2
√

2
k
N

c|z| 12 < 2
√

2
k
N

c
(√

2
k
N

) 1
2

< Ck
3
2 N−

3
2

for an appropriate constant C.

Inserting this into the inner sum we have∣∣∣∣∣∣∣∣
N

∑
k=1

∑
0≤h<k

(h,k)=1

ik−
5
2 eπis(h,k)e−2πinh/k I2(h, k)

∣∣∣∣∣∣∣∣ <
N

∑
k=1

∑
0≤h<k

(h,k)=1

Ck−1N−
3
2

≤ CN−
3
2

N

∑
k=1

1 = CN−
1
2 ,

and thus

p(n) =
N

∑
k=1

∑
0≤h<k

(h,k)=1

ik−
5
2 eπis(h,k)e−2πinh/k I1(h, k) +O(N−

1
2 ).

Our next step will be to simplify the integral I1(h, k). In (3.11) we have already seen
that sl is mapped to the upper half plane by the transformation t and thus the path
of integration has negative orientation. We want to complete it to the full circle K− of
radius 1/2 and centre point 1/2 with negative orientation. To estimate the difference
we see that |t(sl)|, |t(sh)| <

√
2k/N if k ≥ 2 and that |t(sh(0, 1))|, |t(sl(1, 1))| <√

2/N by lemma (3.12). For any point z on K− \ {0} we have Re(1/z) = 1 and
0 < Re(z) ≤ 1 and thus the integrand has absolute value

|Ψk(z)e2πnz/k2 | = e2πnRe(z)/k2︸ ︷︷ ︸
≤e2πn

|z| 12︸︷︷︸
≤21/4k1/2N−1/2

exp
(

π

12
Re
(

1
z

)
− π

12k2 Re(z)
)

︸ ︷︷ ︸
≤eπ/12

≤ e2πneπ/1221/4k1/2N−1/2.

Thus the integrand is bounded on the circle almost everywhere. We estimating the
length of the negatively orientated arc from t(sl) to t(sh) by
π(|t(sl) − t(sh)|) ≤ π(|t(sl)| + |t(sh)|) < π2

√
2k/N for k ≥ 2 and by
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π(|t(sh(0, 1))|+ |t(sl(1, 1))|) < π2
√

2/N for k = 1. Then we get

I1(h, k) =
∫

t(UN(C(h,k)))

Ψk(z)e2πnz/k2
dz for k ≥ 2,

=
∫

K−

Ψk(z)e2πnz/k2
dz−

∫
K−	t(UN(C(h,k)))

Ψk(z)e2πnz/k2
dz

=
∫

K−

Ψk(z)e2πnz/k2
dz +O

(
π2
√

2k/Ne2πneπ/1221/4k1/2N−1/2
)

=
∫

K−

Ψk(z)e2πnz/k2
dz +O(k

3
2 N−

3
2 ).

Using exactly the same estimates as for I2(h, k), we deduce

p(n) =
N

∑
k=1

∑
0≤h<k

(h,k)=1

ik−
5
2 eπis(h,k)e−2πinh/k

∫
K−

Ψk(z)e2πnz/k2
dz +O(N−

1
2 ).

Setting
Ak(n) = ∑

0≤h<k
(h,k)=1

eπis(h,k)−2πinh/k

and regarding the integral’s independence of h we have

p(n) = i
N

∑
k=1

Ak(n)k−
5
2

∫
K−

Ψk(z)e2πnz/k2
dz +O(N−

1
2 ).

Now it suffices to proof the last two lemmas

(4.2) Lemma
We have

π/12+i∞∫
π/12−i∞

z−
5
2 exp

(
z +

π2

z6k2

(
n− 1

24

))
dz

= i2
5
2 3

3
2 π−

5
2 k3d(n, k) ,where

d(n, k) :=
d

dn


sinh

(
π
k

√
2
3

(
n− 1

24

))
√

n− 1
24

 .

�
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Proof
We will use real analysis to do this and cite Watson p.181. For any c > 0 and ν ∈ C

with Re(ν) > 0 we have

Iν(τ) =
(1

2 τ)ν

2πi

c+i∞∫
c−i∞

t−ν−1et+τ2/(4t)dt,

where Iν is a Bessel function. Another representation is know if ν = 3/2 and c =
π/12. Then we have

I3
2
(τ) =

√
2τ

π

d
dτ

(
sinh τ

τ

)
.

We set

τ(n) =
π

k

√
2
3

(
n− 1

24

)
.

The chain rule yields

d
dn

(
sinh τ(n)

τ(n)

)
=

d
dτ

(
sinh τ

τ

)∣∣∣∣
τ=τ(n)

· dτ(n)
dn

.

Combining this we have

d(n, k) :=
d

dn


sinh

(
π
k

√
2
3

(
n− 1

24

))
√

n− 1
24

 =
√

2
3

π

k
· d

dτ

(
sinh τ

τ

)∣∣∣∣
τ=τ(n)

·
√

2
3

π

k
1
2

(
n− 1

24

)− 1
2

=
π2

3k2
d

dτ

(
sinh τ

τ

)∣∣∣∣
τ=τ(n)

·
(

n− 1
24

)− 1
2

,

and furthermore

I3
2
(τ(n)) =

√
2τ(n)

π

d
dτ

(
sinh τ

τ

)∣∣∣∣
τ=τ(n)

=

√
2τ(n)

π

3k2

π2

(
n− 1

24

) 1
2

d(n, k)

=
3k2

π2

√√√√2
√

2√
3k

(
n− 1

24

) 1
2
(

n− 1
24

) 1
2

d(n, k)

= 6
3
4 π−2k

3
2

(
n− 1

24

) 3
4

d(n, k).
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The final conclusion is

π/12+i∞∫
π/12−i∞

z−
5
2 exp

(
z +

π2

z6k2

(
n− 1

24

))
dz

= I3
2
(τ(n))

2πi

(1
2 τ(n))

3
2

= 6
3
4 π−2k

3
2

(
n− 1

24

) 3
4

d(n, k)
2πi

(1
2)

3
2

(π

k

)− 3
2
(

2
3

(
n− 1

24

))− 3
4

= i2
5
2 3

3
2 π−

5
2 k3d(n, k). �

(4.3) Lemma
With all notations as in (4.1) and (4.2) we have

ik−
5
2

∫
K−

Ψk(z)e2πnz/k2
dz =

√
k√

2π
d(n, k).

�

Proof
We start considering

ik−
5
2

∫
K−

Ψk(z)e2πnz/k2
dz = ik−

5
2

∫
K−

z
1
2 exp

( π

12z
− πz

12k2

)
e2πnz/k2

dz

= ik−
5
2

∫
K−

z
1
2 exp

(
π

12z
+

2πz
k2

(
n− 1

24

))
dz.

The transformation of the punctured plane z 7→ 1/z is a diffeomorphism mapping
the line {z ∈ C : <(z) = 1} onto K− \ {0} and by applying it we have :

ik−
5
2

∫
K−

Ψk(z)e2πnz/k2
dz = ik−

5
2

1+i∞∫
1−i∞

z−
1
2 exp

(
πz
12

+
2π

zk2

(
n− 1

24

))
(−1)z−2dz

= −ik−
5
2

1+i∞∫
1−i∞

z−
5
2 exp

(
πz
12

+
2π

zk2

(
n− 1

24

))
dz.
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Another transformation z 7→ 12z/π and lemma (4.2) yields

ik−
5
2

∫
K−

Ψk(z)e2πnz/k2
dz

= −ik−
5
2

( π

12

) 5
2

π/12+i∞∫
π/12−i∞

z−
5
2 exp

(
z +

π2

z6k2

(
n− 1

24

))
12
π

dz

= −ik−
5
2

( π

12

) 3
2

2
5
2 3

3
2 π−

5
2 d(n, k)ik3

=
√

k√
2π

d(n, k).
�
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