

Galoistheorie für Differentialgleichungen, Übungsblatt 3

Abgabe bis Montag, den 11.05.2009, 12:00 Uhr

Aufgabe 1 (4 Punkte)

Es sei (F,∂) ein Differentialkörper und $\ell \in F[\partial]$. Es seien weiter $E \supsetneq L \supseteq F$ Differentialkörper, sodass sowohl über E als auch über L vollständige Lösungsräume zu ℓ existieren und außerdem E und L als Differentialkörper von den Lösungen über E bzw. L erzeugt werden (d.h. E bzw. L wird als Körper von den Lösungen und deren Ableitungen erzeugt). Zeigen Sie, dass dann $K_E \nsubseteq L$ gilt.

Aufgabe 2 (4 Punkte)

Es sei (M, ∂_M) ein dreidimensionaler Differentialmodul über $(\mathbb{C}(t), \frac{d}{dt})$, sodass ∂_M bezüglich einer Basis von M durch

 $A = \begin{pmatrix} 0 & 0 & 1 \\ t^2 & 0 & \frac{i}{t} \\ 0 & 1 & 0 \end{pmatrix}$

gegeben ist. Bestimmen Sie einen linearen Differentialoperator ℓ , sodass A differentialäquivalent zu A_{ℓ}^{tr} ist.

Aufgabe 3 (4 Punkte)

Es sei (M, ∂_M) ein Differentialmodul über (F, ∂) und es sei weiter $\tilde{\partial}_M = \frac{1}{\partial(t)} \partial_M$ für ein $t \in F$ mit $\partial(t) \neq 0$. Zeigen Sie, dass dann $(M, \tilde{\partial}_M)$ ein Differentialmodul über $(F, \frac{1}{\partial(t)} \partial)$ ist und dass die zyklischen Vektoren bezüglich ∂_M genau die zyklischen Vektoren bezüglich $\tilde{\partial}_M$ sind.

Aufgabe 4 (4 Punkte)

Es sei F ein Differentialkörper und $E \geqslant F$ ein Picard-Vessiot-Körper für $A \in F^{n \times n}$. Zeigen Sie: Es gibt genau einen Picard-Vessiot-Ring $R \leqslant E$ für A.