Fourieranalysis, Übungsblatt 3

Abgabe bis Dienstag, den 12.05.2009, 11:30 Uhr im Abgabekasten des Lehrstuhls A für Mathematik (Hauptgebäude, vor Zimmer 155)

Aufgabe 1 (4+2 Punkte)

- a) Sei $\tilde{f}: [-\pi, \pi) \to \mathbb{R}$ definiert durch $\tilde{f}(x) = \frac{\pi}{2} |x|$ und $f: \mathbb{R} \to \mathbb{R}$ die 2π -periodische Fortsetzung von \tilde{f} . Berechnen Sie $\hat{f}(n)$ für alle $n \in \mathbb{Z}$.
- b) Sei $\tilde{g}: [-\pi, \pi) \to \mathbb{R}$ definiert durch

$$\tilde{g}(x) = \begin{cases} \frac{\pi x + x^2}{2} & \text{für } -\pi \leqslant x \leqslant 0, \\ \frac{\pi x - x^2}{2} & \text{für } 0 < x < \pi \end{cases}$$

und $g:\mathbb{R}\to\mathbb{R}$ die 2π -periodische Fortsetzung von \tilde{g} . Berechnen Sie $\hat{g}(n)$ für alle $n\in\mathbb{Z}$.

Aufgabe 2 (3+2 Punkte)

- a) Bestimmen Sie \hat{D}_n und \hat{F}_n für alle $n \in \mathbb{N}$.
- b) Berechnen Sie für $f \in L^1_{2\pi}$ und $n \in \mathbb{N}$ sowohl $S_n(f, \cdot)$ als auch $\sigma_n(f, \cdot)$.

Hinweis:

Berechnen Sie zunächst allgemein die Fourierkoeffizienten eines trigonometrischen Polynoms.

Aufgabe 3 (3+3 Punkte)

Für $f, g \in L^1_{2\pi}$ definiere f * g durch

$$(f * g)(x) = \frac{1}{2\pi} \int_{[-\pi,\pi]} f(t)g(x-t) \, \mathrm{d}\lambda(t)$$

für alle $x \in \mathbb{R}$, in denen das Integral absolut konvergiert. (f * g heißt das (periodische) *Faltungsprodukt* von f und g.)

- a) Zeigen Sie, daß für $f,g \in L^1_{2\pi}$ stets $f * g \in L^1_{2\pi}$ gilt. Begründen Sie dabei auch, warum f * g f. ü. in $\mathbb R$ wohldefiniert ist.
- b) Zeigen Sie den *Faltungssatz*: $(f * g)^{\hat{}}(k) = \hat{f}(k)\hat{g}(k)$ für alle $f, g \in L^1_{2\pi}$ und $k \in \mathbb{Z}$.

Bitte wenden \rightarrow

Aufgabe 4 (3 Punkte)

Zeigen sie, dass für alle $-\pi \leqslant x \leqslant \pi$ gilt:

$$x^{2} = \frac{\pi^{2}}{3} + 4 \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}} \cos(kx)$$