

Algebraische Funktionenkörper, Übungsblatt 4

Abgabe bis Dienstag, den 18.05.2010, 14:00 Uhr

Auf diesem Blatt bezeichne K stets einen Körper und F/K einen Funktionenkörper vom Geschlecht g mit $K = K_F$.

Aufgabe 1 (4=1+1+2 Punkte)

- (a) Es sei g = 1. Zeigen Sie: Jeder Differentialdivisor ist ein Hauptdivisor.
- (b) Es sei $P \in \mathbb{P}(F/K)$ eine Stelle vom Grad 1 und $W \in \mathbb{W}$ ein Differentialdivisor. Bestimmen Sie $\ell(W+P)$ in Abhängigkeit von g.
- (c) Es sei $P \in \mathbb{P}(F/K)$ eine Stelle vom Grad 1 und $W \in \mathbb{W}$ ein Differentialdivisor. Bestimmen Sie $\ell(W-P)$ in Abhängigkeit von g.

Aufgabe 2 (4 Punkte)

Es sei g = 1 und $d_*(F/K) = 1$. Zeigen Sie: Es existieren Elemente $x, y \in F$ mit F = K(x, y) und f(x, y) = 0 für ein $f \in K[X, Y]$ mit $\deg_X(f) \leq 3$ und $\deg_Y(f) \leq 2$.

Aufgabe 3 (4=1+1+1+1 Punkte)

- (a) Geben Sie ein explizites Beispiel einer Bewertung ν auf einer endlichen Erweiterung L/F an, sodass $\nu|_{F^\times}: F^\times \to \mathbb{Z}$ nicht surjektiv ist.
- (b) Geben Sie ein explizites Beispiel einer endlichen Erweiterung L/F an mit Stellen $\tilde{P} \in \mathbb{P}(L/K_L)$, $P \in \mathbb{P}(F/K)$ sodass $\tilde{P} \mid P$, $e(\tilde{P} \mid P) > 1$ und $f(\tilde{P} \mid P) = 1$ gelten.
- (c) Geben Sie ein explizites Beispiel einer endlichen Erweiterung L/F an mit Stellen $\tilde{P} \in \mathbb{P}(L/K_L)$, $P \in \mathbb{P}(F/K)$ sodass $\tilde{P} \mid P$, $e(\tilde{P} \mid P) = 1$ und $f(\tilde{P} \mid P) > 1$ gelten.
- (d) Geben Sie ein explizites Beispiel einer endlichen Erweiterung L/F an mit Stellen $\tilde{P} \in \mathbb{P}(L/K_L)$, $P \in \mathbb{P}(F/K)$ sodass $\tilde{P} \mid P$, $e(\tilde{P} \mid P) > 1$ und $f(\tilde{P} \mid P) > 1$ gelten.

Hinweis: Für Beispiele aus der Vorlesung gibt es keine Punkte.

Aufgabe 4 (4 Punkte)

Es sei $F = \mathbb{Q}(x,y)$ mit $y^2 = x^6 + x + 1$. Bestimmen Sie das Geschlecht von F/\mathbb{Q} .