

Algebraische Funktionenkörper, Übungsblatt 5

Abgabe bis Mittwoch, den 02.06.2010, 14:00 Uhr

Aufgabe 1 (2=1+1 Punkte)

Es sei F/K ein Funktionenkörper mit $K=K_F$ und L/F eine Galoiserweiterung. Weiter sei P eine Stelle von F mit Fortsetzung \tilde{P} nach L.

- (a) Es sei $\sigma \in Gal(L/F)$. Zeigen Sie, dass $D(\sigma(\tilde{P})|P) = \sigma D(\tilde{P}|P)\sigma^{-1}$ gilt. Folgern Sie, dass alle Zerlegungsgruppen von Stellen, die über P liegen, in Gal(L/F) konjugiert sind.
- (b) Es sei $\sigma \in Gal(L/F)$. Zeigen Sie, dass $I(\sigma(\tilde{P})|P) = \sigma I(\tilde{P}|P)\sigma^{-1}$ gilt. Folgern Sie, dass alle Trägheitsgruppen von Stellen, die über P liegen, in Gal(L/F) konjugiert sind.

Aufgabe 2 (6=2+2+2 Punkte)

Es sei (L,v) ein diskret bewerteter Körper. In dieser Aufgabe wird gezeigt, dass eine Vervollständigung (\hat{L},\hat{v}) existiert. Wir betrachten dazu die Menge C der Cauchyfolgen in (L,v) als Ring bezüglich der komponentenweisen Addition und Multiplikation.

- (a) Zeigen Sie, dass die Menge $N \subseteq C$ der Nullfolgen in (L, v) ein maximales Ideal in C ist, d.h. $\hat{L} := C/N$ ist ein Körper.
- (b) Es sei $(x_n)_n \in C$. Zeigen Sie, dass der Limes $\lim_{n\to\infty} v(x_n)$ in $\mathbb{Z} \cup \{\infty\}$ existiert und eine Abbildung $\hat{v}: \hat{L} \to \mathbb{Z} \cup \{\infty\}$ induziert. Zeigen Sie weiter, dass \hat{v} eine diskrete Bewertung auf \hat{L} ist.
- (c) Zeigen Sie, dass (\hat{L}, \hat{v}) eine Vervollständigung von (L, v) ist.