Algebraische Gruppen, Übungsblatt 2

Abgabe bis Freitag, den 12.11.2010, 10:00 Uhr

Es sei stets *k* ein algebraisch abgeschlossener Körper.

Aufgabe 6 (5 Punkte)

- (1) Es sei $X \subset \mathbb{A}^n$ eine affine Varietät und $p_1, \ldots, p_m \in k[T_1, \ldots, T_n]$ mit $X = \mathbb{V}(p_1, \ldots, p_m)$. Weiters sei $q \in k[T_1, \ldots, T_n]$ und $U = X \setminus \mathbb{V}(q)$. Zeigen Sie:
 - (a) U ist isomorph zu $V(p_1, ..., p_n, qT_{n+1} 1) \subset \mathbb{A}^{n+1}$ (als geringter Raum).
 - (b) Jede reguläre Funktion $f: U \to k$ ist von der Form $f(x) = \frac{p(x)}{q(x)^e}$ ($\forall x \in U$) für ein $p \in k[T_1, ..., T_n]$ und $e \geqslant 0$.
- (2) Es sei X eine Prävarietät und $U \subset X$ offen. Zeigen Sie: $(U, \mathcal{O}_X|_U)$ ist eine Prävarietät.

Aufgabe 7 (5 Punkte)

Es seien *X* und *Y* Prävarietäten.

- (1) Zeigen Sie dass die Projektionen $p: X \times Y \to X$ und $q: X \times Y \to Y$ offene Abbildungen sind (d.h offene Mengen werden auf offene Mengen abgebildet). Gilt das auch für abgeschlossenen Mengen?
- (2) Es seien $X' \subset X$ und $Y' \subset Y$ offene (bzw. abgeschlossene) Teilmengen. Zeigen Sie dass die offene (bzw. abgeschlossene) Teilmenge $p^{-1}(X') \cap q^{-1}(Y')$ von $X \times Y$ ein Produkt von X' und Y' ist.
- (3) Es sei X separiert und $X' \subset X$ offen (bzw. abgeschlossen). Zeigen Sie dass auch X' separiert ist.

Aufgabe 8 (5 Punkte)

(1) Wir betrachten die sogenannte Segre-Einbettung $\sigma: \mathbb{P}^r \times \mathbb{P}^s \to \mathbb{P}^n$ mit n=(r+1)(s+1)-1 gegeben durch

$$\sigma((x_0: \dots : x_r), (y_0: \dots : y_s)) = (x_0y_0: x_0y_1: \dots : x_0y_s: x_1y_0: \dots : x_1y_s: \dots : x_ry_r).$$

Zeigen Sie:

- (a) σ ist wohldefiniert und injektiv.
- (b) Das Bild $Y := \sigma(\mathbb{P}^r \times \mathbb{P}^s)$ ist abgeschlossen in \mathbb{P}^n .

- (c) σ induziert einen Isomorphismus $\mathbb{P}^r \times \mathbb{P}^s \to Y$ (von Prävarietäten).
- (2) Zeigen Sie mit Hilfe von (1) dass das Produkt zweier projektiver Varietäten wieder eine projektive Varietät ist.

Aufgabe 9 (5 Punkte)

Es sei *X* ein Noetherscher topologischer Raumer. Eine Teilmenge von *X* heißt konstruierbar falls sie eine endliche Vereinigung lokal abgeschlossener Mengen ist. Zeigen Sie:

- (1) Sind $Y, Y' \subset X$ konstruierbar so sind auch $Y \cup Y', Y \setminus Y'$ und $Y \cap Y'$ konstruierbar.
- (2) Eine Teilmenge $Y \subset X$ ist genau dann konstruierbar wenn sie folgende Bedingung erfüllt:
 - (\star) Für jede irreduzible abgeschlossene Teilmenge Z von X gilt $Z \cap Y$ ist nicht dicht in Z oder Z enthält eine nicht leere offene Teilmenge die in Y liegt.
 - Hinweis: Betrachten Sie die Menge $\{\overline{Y}|\ Y\subset X\ \text{ist nicht konstruierbar aber erfüllt }(\star)\}.$
- (3) Es sei $\phi: X \to Y$ ein Morphismus von Varietäten. Beweisen Sie dass das Bild einer konstruierbaren Menge eine konstruierbare Menge ist in folgenden Schritten:
 - (a) Zeigen Sie, dass man ohne Einschränkung annehmen kann, dass *X* and *Y* affin sind.
 - (b) Zeigen Sie mit Hilfe von Aufgabe 6 (1), dass jede konstruierbare Teilmenge von X das Bild eines Morphismus affiner Varietäten ist.
 - (c) Zeigen Sie, dass $\phi(X)$ konstruierbar ist mit Hilfe von (2) und Satz 2.18.

Zusatzaufgabe (1 Zusatzpunkt)

Welche der algebraischer Varietäten auf den Bildern im 2. Stock Hauptgebäude ist ein Produkt?