

Harmonische Analysis, Übungsblatt 1

Wird besprochen am Dienstag, den 17. April 2012, 11:45 Uhr

Aufgabe 1 Es sei $U \subset X$, $x \in X$, T eine Topologie auf X. Zeigen Sie:

- (a) $\overline{U} = \overline{\overline{U}}$. Speziell ist U abgeschlossen genau dann, wenn $U = \overline{U}$.
- (b) $x \in \overline{U} \Leftrightarrow \forall V \in \mathcal{U}_x : U \cap V \neq \emptyset$
- (c) Ist \mathcal{T} von einer Metrik d induziert, so gilt: $x \in \overline{U} \Leftrightarrow \forall n \in \mathbb{N} \exists x_n \in U \text{ mit } x = \lim_{n \to \infty} x_n \text{ (bzgl. } d).$
- (d) *U* liegt dicht in *X* genau dann, wenn für alle $\emptyset \neq V \in \mathcal{T}$ gilt: $U \cap V \neq \emptyset$.

Aufgabe 2 Zeigen Sie:

- (a) f stetig $\Leftrightarrow \forall x \in X \forall U \in \mathcal{U}_{f(x)} \exists V \in \mathcal{U}_x \text{ mit } f(V) \subset U$.
- (b) $f: X \to Y, g: Y \to Z$ stetig $\Rightarrow g \circ f: X \to Z$ stetig.
- (c) Eine Abbildung $f:X\to Y$ ist stetig auf X, genau dann wenn $f(\overline{A})\subset \overline{f(A)}$ für alle $A\subset X$ gilt.
- (d) Es sei $f: X \to Y$ eine stetige Surjektion. Ist $D \subset X$ eine dichte Teilmenge von X, so ist f(D) dicht in Y.
- **Aufgabe 3** (a) Beweisen oder widerlegen Sie: Die Produkttopologie zweier topologischer Räume (X_1, \mathcal{T}_1) und (X_2, \mathcal{T}_2) besteht aus allen kartesischen Produkten von Mengen aus \mathcal{T}_1 und \mathcal{T}_2 .
 - (b) Es sei $\mathbb{R} = \mathbb{R}^1$ versehen mit der durch die Metrik in Beispiel 0.5 (1) induzierte Topologie. Zeigen Sie: Die Produkttopologie auf $\mathbb{R}^2 = \mathbb{R}^1 \times \mathbb{R}^1$ stimmt mit der auf \mathbb{R}^2 durch die Metrik induziert Topologie überein.

Aufgabe 4 Es sei X ein normierter reeller Vektorraum, d. h. die Norm definiere die Topologie auf X. Zeigen Sie: Skalarmultiplikation $\mathbb{R} \times X \to X$, $(\lambda, x) \mapsto \lambda x$ und Vektoraddition $X \times X \to X$, $(x, y) \mapsto x + y$ sind stetig, wobei \mathbb{R} mit der natürlichen Topologie und $\mathbb{R} \times X$ und $X \times X$ mit der entsprechenden Produkttopologie versehen wird.

Leistungsnachweis: 50 % der Hausaufgaben und mündliche Prüfung

Sprechstunden: Prof. Dr. H. Führ Mo. 11:00 Uhr Raum 101, Templergraben 81 Dr. M. Neuhauser nach Vereinb. Raum 103, Templergraben 81