4. Übung zur Algebraischen Zahlentheorie I

Abgabe bis 26.05.2014, 12.00 Uhr

Aufgabe 1

Sei $K = \mathbb{Q}(\varrho)$ gegeben und $\mathfrak{o}_K = \mathbb{Z}[\varrho]$ mit $\varrho := \sqrt{-5}$. Betrachten Sie noch einmal die Ideale

$$I_1 = (3, 1 + \varrho)$$
 , $I_2 = (3, 1 - \varrho)$, $I_3 = (2, 1 + \varrho)$

in o_K und $I = I_1 \cdot I_2 \cdot I_3^2$ aus Aufgabe 1 von Blatt 2.

- (a) Zeigen Sie, dass I_1 , I_2 und I_3 maximale Ideale sind.
- (b) Berechnen Sie die Diskriminante von I_1 , I_2 , I_3 und I.

(2+2 Punkte)

Aufgabe 2

Sei $K_1=\mathbb{Q}(i)$ und $K_2=\mathbb{Q}(\sqrt{-3})$. Bestimmen Sie die bezüglich der Spurbilinearform dualen Gitter $\mathfrak{o}_{K_1}^\sharp$ und $\mathfrak{o}_{K_2}^\sharp$. (4 Punkte)

Aufgabe 3

Sei K ein algebraischer Zahlkörper. Wir nennen ein Element $a \in K$ total positiv, wenn $\sigma(a) \in \mathbb{R}_+^*$ für alle Einbettungen $\sigma: K \to \mathbb{C}$ gilt.

Sei für ein Element $a \in K$ das Minimalpolynom über $\mathbb Q$ gegeben durch

$$\mu_a(X) = X^n + \alpha_{n-1}X^{n-1} + \dots + \alpha_0$$
.

Zeigen Sie, dass wenn a total positiv ist, $(-1)^{n-k}\alpha_k > 0$ für alle k = 0, ..., n-1 gilt. (4 Punkte)

Aufgabe 4

Sei $K=\mathbb{Q}(\alpha)$ ein algebraischer Zahlkörper mit $[K:\mathbb{Q}]=n$. Beweisen Sie die Identität

$$d(1,...,\alpha^{n-1}) = (-1)^{\frac{n(n-1)}{2}} N_{K|Q}(\mu'_{\alpha}(\alpha)),$$

wobei μ_{α} das Minimalpolynom von α über $\mathbb Q$ bezeichne und μ'_{α} seine Ableitung. (4 Punkte)

Aufgabe 5 (Kreisteilungskörper)

Es sei p eine Primzahl, $a \in \mathbb{N}$ und $m = p^a$, wobei wir $m \neq 2$ annehmen. Es sei ζ_m eine primitive m-te Einheitswurzel und $K = \mathbb{Q}(\zeta_m)$ der m-te Kreisteilungskörper über \mathbb{Q} . Mit φ bezeichnen wir die Eulersche φ -Funktion. Wir wollen in dieser Aufgabe den Ganzheitsring von K bestimmen.

(a) Zeigen Sie
$$po_K = (1 - \zeta_m)^{\varphi(m)} o_K$$
.

(b) Zeigen Sie
$$d(1, \zeta_m, \dots, \zeta_m^{\varphi(m)-1}) = \frac{(-1)^{\varphi(m)/2} m^{\varphi(m)}}{p^{m/p}}.$$

(c) Schließen Sie aus (a) und (b), dass $\mathfrak{o}_K = \mathbb{Z}[\zeta_m]$ ist.

Hinweis: Verwenden Sie in Teil (c) die Cramersche Regel:

Sei R ein kommutativer Ring und $A \in \operatorname{Mat}(n,R)$ eine quadratische Matrix mit Einträgen in R. Falls das lineare Gleichungssystem Ax = b eine Lösung $x = (x_1, \dots, x_n)^{\operatorname{tr}}$ besitzt, so gilt $x_i \det(A) = \det(A_i)$, wobei A_i die Matrix ist, die aus A entsteht, indem man die i-te Spalte durch b ersetzt. (2+2+2 Punkte)

Bitte geben Sie Ihre schriftliche Ausarbeitung bis spätestens Montag, den 26.05.2014 um 12.00 Uhr, im Übungskasten vor Raum 155 HG ab.