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Mathematical statements 1

Propositions are assertions about (usually mathematical) entities,
which can be meaningfully assigned a truth value, “true” or “false”.

Examples of propositions:

I Yesterday it rained in Aachen.

I Equations: For all real numbers a, b: (a + b)2 = a2 + 2ab + b2.
(This is a true proposition.)

I Inequalities: For all real numbers a, b: (a + b)2 > a2 + b2.
(This is a false proposition.)
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Further examples 2

Sentences that are not propositions:

I Today it is going to rain. (Truth values cannot be assigned to
prognoses.)

I I hope it does not rain again.

I The number π is more important than the number
√

2. ("Impor-
tance" is not a meaningful property of numbers.)

I Does π2 equal 1? (This is not an assertion.)
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Operations on mathematical propositions 3

Mathematical propositions can be combined to yield new statements.
Suppose that A, B are mathematical propositions.

I Negation: ¬A is true precisely when A is false.

I Conjunction: A ∧B (read: "A and B") is true precisely when both
A and B are true.

I Disjunction: A∨B (read: "A or B") is true precisely when at least
one of the statements A, B is true.

I Implication: A ⇒ B (read "A implies B) is true precisely when the
truth of A implies the truth of B. Formally, A ⇒ B is true precisely
when (¬A) ∨B is true.

I Equivalence: A ⇔ B (read "A is equivalent to B") is true precisely
when both A ⇒ B and B ⇒ A are true.
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Examples 4

I The implication
There are 2 e in my right pocket ⇒ I have at least 2 e on me
is true.

I Conversely, the implication
I have at least 2 e on me ⇒ There are 2 e in my right pocket
is false.

Note: The validity of the implications does not depend on the truth of
the isolated statements.
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Sets 5

A set is a collection of well-defined, distinct objects. The objects that
are contained in a set M are called the elements of M .
How to write down a set:

I Listing all the elements of the set: M = {a, b, c, d} is the set con-
taining the elements a, b, c and d.

I Describing the elements: M = {x : A(x) is true }, where A(x) is a
proposition depending on x.

Examples:

I M = {2, 4, 6, 8}

I N = {x : x is an even natural number with x < 10}



J

I

Subsets and inclusion 6

If A and B are sets, A is called a subset of B if every element of A is
contained in B. We then write A ⊂ B, or B ⊃ A.

A ⊂ B ⇔ ( for all x ∈ A : x ∈ B)

Two sets are equal if they have the same elements. Hence

A = B ⇔ (A ⊂ B ∧B ⊂ A)

Example:

{2, 4, 6, 8} = {x : x is an even natural number with x < 10}
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Operations on sets: Intersection and union 7

Given sets A and B,

I the union of A and B is the set of all elements contained in either
one:

A ∪B = {x : x ∈ A ∨ x ∈ B} ;

I the intersection of A and B is the set of all elements contained in
both:

A ∩B = {x : x ∈ A ∧ x ∈ B} .

I the difference of A and B is the set of all elements contained in
A, but not in B:

A \B = {x : x ∈ A ∧ x 6∈ B} .
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Visualization of set operations 8

From left to right: Union, intersection, difference
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The most important sets: Number domains 9

I The empty set: The set containing no elements is denoted ∅.
I Natural numbers: N = {1, 2, . . .}, N0 = {0, 1, . . .} = N ∪ {0}.
I Integer numbers: Z = {0,±1,±2, . . .}.
I Rational numbers: The set of fractions Q = {p

q : p, q ∈ Z, q > 0}.
I Real numbers: R = set of all decimal expansions

x = n.a1a2a3 . . . , n, a1, . . . an ∈ N0 , 0 ≤ ai ≤ 9 .

Examples:

I 1
4 = 0.25

I 1
7 = 0.142857142857... = 0.142857

I The circumference of a circle with diameter 1 is given by
π = 3.1415926.... (irrational number)
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The purpose of number domains 10

Depending on the operations one wishes to perform on numbers,
there is a hierarchy of number domains:

I Natural numbers: Useful for elementary tasks like counting ob-
jects. Sums of natural numbers are natural numbers. Taking dif-
ferences of natural numbers leads to

I Integers: Integers are natural numbers with a sign. Taking quo-
tients of integers leads to

I Rational numbers: Rational numbers are closed under taking dif-
ferences and quotients. Computers and calculators use rational
numbers. The necessity of taking roots (and other useful opera-
tions, like exponentiating) leads to

I Real numbers: Most importantly, real numbers and their proper-
ties are the basis of calculus.
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Inclusions between number domains 11

The following chain of inclusions holds:

∅ ⊂ N ⊂ N0 ⊂ Z ⊂ Q ⊂ R

The first inclusion is true be default: The empty set is contained in
every set.
For the last inclusion recall: A real number

x = n.a1a2a3 . . . , n, a1, . . . an ∈ N0 , 0 ≤ ai ≤ 9 .

is rational if and only if its decimal expansion breaks off or is periodic.
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Adding and subtracting real numbers 12

Real numbers can be added and subtracted: For each pair (x, y) of
real numbers there are unique numbers x + y, x − y ∈ R such that
the following axioms:

I Neutral element: For all x ∈ R: x + 0 = x.

I Associativity: (x + y) + z = x + (y + z).
Thus, we can omit brackets in this setting: x + y + z := (x + y) + z.

I Commutativity: x + y = y + x.

I Subtraction and addition are inverse operations:
y − y = 0, and thus x + y − y = x + 0 = x.

Instead of 0− y one writes −y. Hence x− y = x + (−y). In particular,
addition and subtraction commute.
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Multiplying and dividing real numbers 13

Real numbers can be multiplied and divided:For each pair (x, y) of
real numbers there are unique numbers x · y, x/y ∈ R (with x/y only
defined if y 6= 0 !) such that the following axioms are fulfilled:

I Multiplication by zero: For all x ∈ R: x · 0 = 0.

I Neutral element: For all x ∈ R: x · 1 = x.

I Associativity: (x · y) · z = x · (y · z).
Thus, we can omit brackets in this setting: xyz = (x · y) · z.

I Commutativity: x · y = y · x.

I Multiplication and division are inverse operations:
For y ∈ R, different from 0, y/y = 1, and thus (xy)/y = x · 1 = x.

We y−1 instead of 1/y and x
y instead of x/y. Then x

y = x · y−1.
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Combining addition and multiplication 14

For n ∈ N0, x ∈ R: x + x + . . . + x︸ ︷︷ ︸
n occurrences

= n · x

Furthermore, one has distributive rules: For x, y, z ∈ R,

I x · (y + z) = (xy) + (xz)

I (y + z)/x = (y/x) + (z/x), for x 6= 0

I x · (y − z) = (xy)− (xz)

I (y − z)/x = (y/x)− (z/x), for x 6= 0

To avoid cluttered notation, multiplication/division are always assumed
to be performed before addition/subtraction. Hence:

(xy) + z = xy + z , x(y + z) = (xy) + (xz) = xy + xz



J

I

Ordering and comparing real numbers 15

Every real number x ∈ R fulfills precisely one of the following:

x < 0 , x = 0 , x > 0 .

x > 0 is called positive, x < 0 is negative.
One writes x < y if x − y < 0. This ordering fulfills the following
axioms, for all x, y, z ∈ R

1. x < y and y < z ⇒ x < z.

2. x < y ⇒ x + z < y + z

3. x < y ⇒ −y < −x

4. z > 0 and x < y ⇒ zx<zy

5. z < 0 and x < y ⇒ zx>zy
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Alternative ordering: ≤, > etc. 16

One defines
y > x :⇔ x < y

and
x ≤ y :⇔ (x < y) ∨ (x = y) .

Also, y ≥ x is the same as x ≤ y. The rules derived for “<” on the
previous slide are easily adapted to “>,≤,≥”. An equivalence used
in many proofs is

x = y ⇔ (x ≤ y) ∧ (y ≤ x) .

It is also customary to write chains of inequalities:

x < y ≤ z ⇔ (x < y) ∧ (y ≤ z) .
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Intervals 17

Definition.
For a, b ∈ R, with a < b, we define

I (a, b) = {x ∈ R : a < x < b} (open interval)

I (a, b] = {x ∈ R : a < x ≤ b} (half-open interval)

I [a, b) = {x ∈ R : a ≤ x < b} (half-open interval)

I [a, b] = {x ∈ R : a ≤ x ≤ b} (closed interval)

I (−∞, b) = {x ∈ R : x < b} and (−∞, b] = {x ∈ R : x ≤ b}

I (a,∞) = {x ∈ R : a < x} and [a,∞) = {x ∈ R : a ≤ x}
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Absolute value 18

For every y ∈ R, either y ≥ 0 or −y ≥ 0. We let

|y| =

{
y for y ≥ 0

−y for y < 0
,

which is called absolute value or modulus of y.

Rules for the absolute value: Let x, y ∈ R
I |x| ≥ 0, and |x| = 0 ⇔ x = 0.

I |xy| = |x| |y|.
I |x| = | − x|.
I |x + y| ≤ |x| + |y|.

The last property is known as the triangle inequality. Useful reformu-
lations are

| |x| − |y| | ≤ |x + y| ≤ |x| + |y| .



J

I

Powers 19

We next want to make sense of the expression xy, with x, y ∈ R. This
takes several steps. We start out by considering y = n ∈ N0:

Multiplying n times the same number x ∈ R gives the nth power of x

x · x · . . . · x︸ ︷︷ ︸
n occurrences

= xn .

Powers are assumed to be calculated before multiplication:
For example, xyn + z = (x(yn)) + z.
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Rules for powers 20

Let x, y ∈ R and m, n ∈ N.

1. x0 = 1, for all x ∈ R. (In particular: 00 = 1.)

2. xnxm = xn+m

3. xnyn = (xy)n

4. (xn)m = xnm

Negative powers: One writes

x−n = (x−1)n = 1/(xn) .
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Application: Monotonicity of powers 21

Squares are positive: For x ∈ R, x 6= 0:

x2 > 0 .

Indeed,

if x < 0 ⇒ x · x > 0 · x = 0 ( see slide 15, rule 5)

if x > 0 ⇒ x · x > 0 · x = 0 ( see slide 15, rule 4)

Monotonicity of powers: For n ∈ N and 0 < x < y,

0 < xn < yn .

This rule is obtained by application of the order axioms:

0 < x < y ⇒ x2 = x · x < x · y < y · y = y2 ,

and so on. (Mathematically rigourous method: Proof by induction.)
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Roots and fractional powers 22

Let n ∈ N and x > 0. Then there is a unique y > 0 such that

yn = x .

One defines
x1/n := y ,

and calls y the nth root of x. Alternative notation: n
√

x := x1/n.

By definition of x1/n, one has

(x1/n)n = x = x1 = xn/n .

Hence it makes sense to define xy, for y = m/n ∈ Q, by letting

xy = (x1/n)m.
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Rules for fractional powers 23

The rules for integer powers carry over to fractional powers:
Let x, y ∈ R be positive, and p, q ∈ Q.

1. x0 = 1, for all x ∈ R. (In particular: 00 = 1.)

2. xpxq = xp+q.

3. xpyp = (xy)p

4. (xp)q = xpq

Note: Do not forget the restriction x > 0!
We noted previously for every y ∈ R, that y2 > 0.
Hence the equation y2 = −1 cannot be solved in R, i.e., there is no
real number y =

√
−1
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Arbitrary powers 24

The expression xy can now be extended to x > 0 and y ∈ R arbitrary,
using that y can be arbitrarily well be approximated by y′ ∈ Q.
(Note: A more detailed explanation already requires notions from
calculus. )

The rules for fractional powers carry over to arbitrary powers:
Let x, y ∈ R be positive, and s, t ∈ R.

1. x0 = 1, for all x ∈ R. (In particular: 00 = 1.)

2. xsxt = xs+t.

3. xsys = (xy)s

4. (xs)t = xst
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Equations 25

Interesting quantities are often given as solutions of equations.
Several questions arise: Does a solution exist in a given set? Is it
unique?
These questions are usually answered by determining the set S of all
solutions.

Examples:

I Consider the equation 3 + 2x = 5− 2x. This can be easily solved
for x, yielding x = 0.5. Hence the set of solutions is S = {0.5}.

I The equation (5x)2 = 25x2 is true for every x ∈ R. Hence we
obtain S = R as set of all solutions.

I We know for all x ∈ R that x2 > 0. In particular, the equation
x2 = −1 has no solution in R, and S = ∅ in this case.
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Further Examples 26

I The equation x2 = 2 has no solutions in Z. This is easily seen,
since 02 = 0 6= 2, (±1)2 = 1 6= 2, and n2 > 2 for all n ∈ Z, |n| > 1.

I It is true (but harder to show) that x2 = 2 has no solution in Q.

I The equation x2 = 2 has two real solutions, S = {±
√

2}.
(Note that we defined

√
2 as the positive solution of this equation.)

I More generally, the equation x2 + ax + b = 0, with fixed a, b ∈ R
has the solutions

x1,2 =
a±

√
a2 − 4b

2
,

provided that a2 − 4b ≥ 0. Hence there exist two solutions in R
if a2 − 4b > 0, one solution if a2 − 4b = 0, and no solutions if
a2 − 4b < 0.
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One more class of examples: Linear equations 27

A linear equation has the form ax + b = 0, with a, b ∈ R and variable
x. Existence and numbers of solutions depend on a and b:

I If a 6= 0, we can solve directly for x

ax + b = 0 ⇔ ax = −b ⇔ x = −b

a
,

showing that there exists precisely one solution.

I If a = 0, the equation becomes b = 0. Hence, if b = 0, then S = R,
otherwise S = ∅.
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Summary 28

I Mathematics generally proceeds by the following steps.

B Define objects (Propositions, sets, numbers).
B Define operations on objects (e.g., disjunctions, unions, sums).
B Fix rules or axioms that the operations must obey.
B Derive true mathematical statements by applying the axioms.

I Most important object: The number domain R

B Algebraic operations on R and their properties
B Extensions of the algebraic operations: Powers, roots
B Ordering on R and its properties


