Calculus and Linear Algebra for Biomedical Engineering

Week 1: Complex Numbers, Trigonometric Functions

H. Führ, Lehrstuhl A für Mathematik, RWTH Aachen, WS 07

Recall from last week:

- ► Extensions of number domains (e.g., from N to Z, from Z to Q, from Q to R) are motivated partly by the desire to extend operations (e.g., subtraction, division, powers).
- \blacktriangleright A negative real number does not have a square root in \mathbb{R} .

Definition. The set \mathbb{C} of complex numbers is defined as

$$\mathbb{C} = \{(x,y): x,y \in \mathbb{R}\}$$
 .

where (x, y) denotes an ordered pair of real numbers. Note: Two ordered pairs (a, b) and (x, y) are equal if and only if a = x and b = y. In particular, (a, b) = (b, a) only if a = b. Operations on complex numbers

Definition. Let $(a, b), (x, y) \in \mathbb{C}$.

► The sum resp. difference is defined as

 $(a,b) + (x,y) = (a+x,b+y) \ , \ (a,b) - (x,y) = (a-x,b-y) \ . \ (1)$

► The product is defined as

$$(a,b) \cdot (x,y) = (ax - by, ay + bx)$$
 . (2)

Pairs are useful for the rigourous definition of complex numbers. For carrying out computations with complex numbers, other notations are preferred.

• We identify $(x, 0) \in \mathbb{C}$ with $x \in \mathbb{R}$.

Note that now, x + y could mean the usual sum of real numbers, or the result of the addition (x, 0) + (y, 0) in \mathbb{C} . However, the latter is (x + y, 0), which we identify with x + y.

- ▶ We define the imaginary unit as $i := (0, 1) \in \mathbb{C}$. Note that $i^2 = -1$.
- We can now write arbitrary complex numbers as

$$z = (x, y) = (x, 0) + (0, y) = x + (0, 1) \cdot y = x + iy$$
 .

► In the new notation, sum and product become
(a+ib)+(x+iy) = (a+x)+i(b+y), (a+ib)·(x+iy) = (ax-by)+i(ay+bx).
(3)

Theorem. All axioms regarding sums (differences) and products in \mathbb{R} carry over to \mathbb{C} . In particular, the following properties can be verified directly.

- ► Addition is commutative and associative.
- Multiplication is commutative and associative.
- ► The distributive law relating addition and multiplication holds.
- ▶ Using the identifications from above, specifically 1 = (1,0) and 0 = (0,0), we find for arbitrary $z \in \mathbb{C}$

$$z = z \cdot 1 = z + 0$$
, $z \cdot 0 = 0$.

Definition. For $z = x + iy \in \mathbb{C}$, we introduce the following notions:

$$\begin{array}{ll} \operatorname{Re}(z)=x &, \ \ \text{the real part of } z & (4) \\ \operatorname{Im}(z)=y &, \ \ \text{the imaginary part of } z & (5) \\ \overline{z}=x-iy &, \ \ \text{the complex conjugate of } z & (6) \\ |z|=\sqrt{z\overline{z}}=\sqrt{x^2+y^2} &, \ \ \text{the modulus or length of } z & (7) \end{array}$$

Note that $x^2 + y^2 \ge 0$, hence |z| is well-defined and positive. |z| is also called absolute value of z.

Useful formulas:

$$z = \operatorname{Re}(z) + i\operatorname{Im}(z)$$
, $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$, $\operatorname{Im}(z) = \frac{z - \overline{z}}{2}$

Theorem. For $z = x + iy \in \mathbb{C} \setminus \{0\}$, write

$$z^{-1} = |z|^{-2} \cdot \overline{z}$$

Then

$$z \cdot z^{-1} = z \cdot \frac{\overline{z}}{|z|^2} = \frac{z\overline{z}}{|z|^2} = \frac{|z|^2}{|z|^2} = 1 \quad .$$
(8)

Remarks: This allows to define division by $z \in \mathbb{C} \setminus \{0\}$, via

$$\frac{w}{z} = w \cdot z^{-1}$$

All properties known for division in \mathbb{R} remain true in \mathbb{C} .

Note that for a real number x = x + i0, one computes $|x + i0| = \sqrt{x^2 + 0^2} = |x|$. Hence the modulus of a real number is the same, whether we regard x as a real or complex number.

Theorem. (Rules for the absolute value:)

Let $w, z \in \mathbb{C}$ $|z| \ge 0$, and $|z| = 0 \Leftrightarrow z = 0$. |wz| = |w| |z|.

$$\blacktriangleright |z| = |-z| = |\overline{z}|$$

 $\blacktriangleright |w+z| \le |w| + |z|.$

The last property is known as the triangle inequality. Useful reformulations are

$$||w| - |z|| \le |w + z| \le |w| + |z|$$
.

General procedure: Given a quotient $z = \frac{x + iy}{a + ib}$, multiply denominator and enumerator with the complex conjugate of the enumerator,

$$z = \frac{x + iy}{a + ib} = \frac{(x + iy)(a - ib)}{(a + ib)(a - ib)} = \frac{(x + iy)(a - ib)}{a^2 + b^2}$$

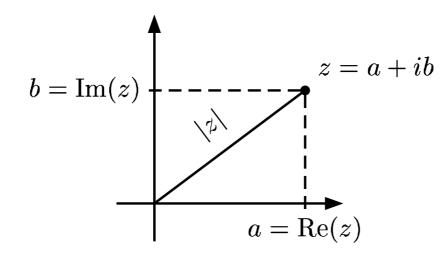
Now the denominator is a real number, and we only need to compute the enumerator using formula (3).

Example: Computing the real and imaginary part of $z = \frac{5+3i}{1-2i}$:

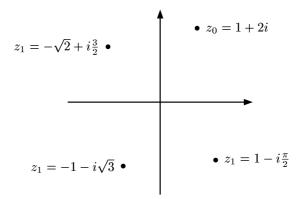
$$z = \frac{5+3i}{1-2i} = \frac{(5+3i)(1+2i)}{(1-2i)(1+2i)} = \frac{-1+13i}{5} = -\frac{1}{5} + \frac{13}{5}i.$$

Hence $\operatorname{Re}(z) = \frac{1}{5}$ and $\operatorname{Im}(z) = \frac{13}{5}$.

So far, we have seen that the set $\mathbb C$ further expands our number domain:


$$\emptyset \subset \mathbb{N} \subset \mathbb{N}_0 \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$

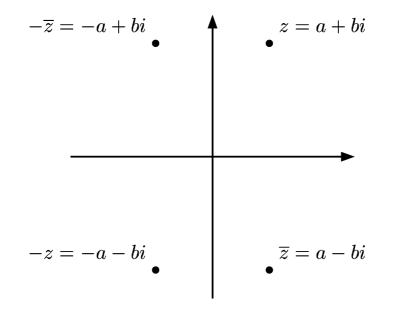
Algebraic operations, eg. taking sums, differences, products, quotients, are extended to \mathbb{C} , and the same computational rules as for \mathbb{R} apply to \mathbb{C} also. (Exception: monotonicity).


Note: We can now take the square root of -1:

$$i^2 = (0 + i \cdot 1) \cdot (0 + i \cdot 1) = 0^2 - 1^2 + 1 \cdot 0 + 0 \cdot 1 = -1$$

A complex number a + ib is a pair of coordinates describing a point (a, b) in the plane. The modulus is the distance to the origin. The *a*-axis is called real axis, the *b*-axis is the imaginary axis.

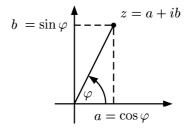
Some more examples



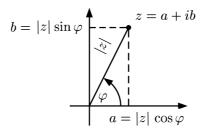
The sum of two complex numbers z_1, z_2 corresponds to the diagonal of the parallelogram with sides z_1 and z_2 . Triangle inequality: The sum of the sidelengths is greater than or

equal to the length of the diagonal.

Taking complex conjugates or negatives of complex numbers amounts to reflection about a coordinate axis or about the origin

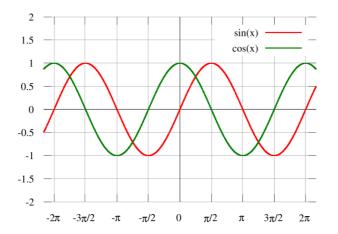

The geometric interpretation of the product requires polar coordinates and trigonometric functions.

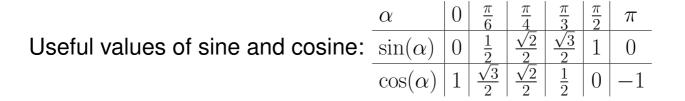
Consider a complex number z = a + ib with


$$1 = |z| = \sqrt{a^2 + b^2}$$

z describes an angle φ with the real axis, and |z|=1 leads to the equations

$$a = \cos(\varphi) \ , \ b = \sin(\varphi)$$


For a general nonzero complex number z = a + ib, we write z = |z|w, where w has length 1. We then get the same picture, except that all lengths are multiplied by |z|:



Thus, every $z \in \mathbb{C} \setminus \{0\}$, can be written (uniquely) as

 $z = r\left(\cos(\varphi) + i\sin(\varphi)\right)$, where r > 0 and $-\pi < \varphi \leq \pi$.

 (r, φ) are the polar coordinates of z, with r = |z|, the length of z. φ is called argument of z, denoted $\arg(z)$. Plots of sine and cosine:

Theorem.

Symmetry: For all angles α

 $\sin(-\alpha) = -\sin(\alpha)$, $\cos(-\alpha) = \cos(\alpha)$, $\sin(\alpha + \frac{\pi}{2}) = \cos(\alpha)$

• Periodicity: For all angles α

$$\sin(\alpha) = \sin(\alpha + 2\pi)$$
, $\cos(\alpha) = \cos(\alpha + 2\pi)$.

For all angles α

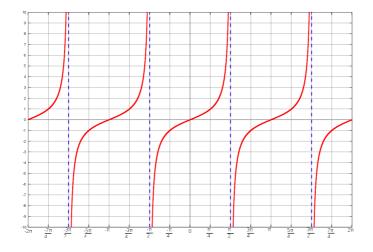
$$\sin(\alpha)^2 + \cos(\alpha)^2 = 1$$

▶ Addition Theorem. For all $\alpha, \beta \in \mathbb{R}$,

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \sin(\beta)\cos(\alpha)$$
(9)
$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\beta)\sin(\alpha)$$
(10)

Definition. For $x \in \mathbb{R}$, we define the tangent function as

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$


Properties of the tangent function:

1. tan is π -periodic. It is undefined for all $x = k\pi + \pi/2$, with $k \in \mathbb{Z}$.

2. For all
$$x \in \mathbb{R}$$
, $\tan(-x) = -\tan(x)$.

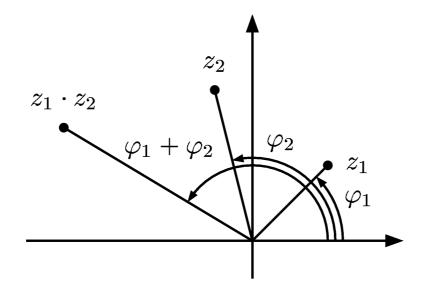
- 3. For every $y \in \mathbb{R}$ there is a unique x with $-\pi/2 < x < \pi/2$ such that $y = \tan(x)$.
- 4. Let $y \in \mathbb{R}$. Suppose that $-\pi/2 < x < \pi/2$ is the unique number with $\tan(x) = y$. We define $\arctan(y) = x$, the arctangent of y.

Plot of tangent

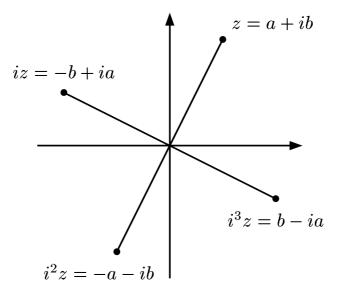
Useful values of tan:

Let $z_1 = r_1(\cos(\varphi_1) + i\sin(\varphi_1))$ and $w = r_2(\cos(\varphi_2) + i\sin(\varphi_2))$. Then $z_1z_2 = r_1r_2(\cos(\varphi_1)\cos(\varphi_2) - \sin(\varphi_1)\sin(\varphi_2))$

+ $i(\cos(\varphi_1)\sin(\varphi_2) + \cos(\varphi_2)\sin(\varphi_1)))$


Now the addition theorem for trigonometric functions yields

$$z_1 z_2 = \underbrace{r_1 r_2}_{= |z_1 z_2|} (\cos(\underbrace{\varphi_1 + \varphi_2}_{\arg(z_1 z_2)}) + i \sin(\varphi_1 + \varphi_2)) ,$$


i.e., z_1z_2 has polar coordinates $(r_1r_2, \varphi_1 + \varphi_2)$. Hence, one computes the polar coordinates of $z_1 \cdot z_2$ by

- multiplying the lengths of z_1 and z_2 , and
- adding the arguments of z₁ and z₂
 (possibly adding or subtracting 2π to remain in (-π, π]))

Illustration of multiplication

i has polar coordinates $(0, \pi/2)$. Hence multiplying by *i* is the same as rotating by 90 degrees counterclockwise:

Given a complex number z = a + ib, its length is easily computed as

$$|z| = \sqrt{a^2 + b^2} \; .$$

The argument is defined as $-\pi < \alpha \leq \pi$ such that

$$|z|\cos(\alpha) = a$$
, $|z|\sin(\alpha) = b$

Hence $tan(\alpha) = \frac{b}{a}$ is a necessary requirement.

General formula: The argument of z = a + ib is given by

$$\alpha = \begin{cases} \arctan(b/a) & a > 0\\ \pi - \arctan(b/a) & a < 0 < b\\ -\pi + \arctan(b/a) & a, b < 0\\ 0 & a = 0 \land b > 0\\ \pi & a = 0 \land b < 0 \end{cases}$$

Theorem. (DeMoivre) Let $n \in \mathbb{N}$, and $z = r(\cos(\varphi) + i\sin(\varphi))$. Then

 $z^n = r^n(\cos(n\varphi) + i\sin(n\varphi))$

i.e., z^n has polar coordinates $(r^n, n\varphi)$.

Inverse: $1 = (1,0) \in \mathbb{C}$ has length 1 and argument $\alpha = 0$. Hence, for arbitrary $z \in \mathbb{C} \setminus \{0\}$

▶
$$1 = |z \cdot z^{-1}| = |z| |z^{-1}|$$
, hence $|z^{-1}| = \frac{1}{|z|}$

► the arguments add up to zero, hence z^{-1} has argument $-\varphi$ therefore the polar coordinates of z^{-1} are $(r^{-1}, -\varphi)$.

 \Rightarrow DeMoivre's theorem holds for all $n \in \mathbb{Z}$

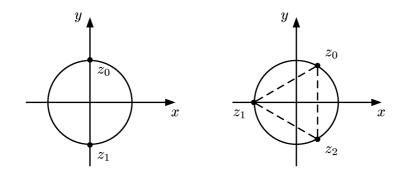
Let $n \in \mathbb{N}$ and $w \in \mathbb{C} \setminus \{0\}$, with polar coordinates (r, φ) . We want to find all solutions of the equation

$$z^n = w$$

By periodicity of \sin , \cos , there are precisely n such complex numbers, having polar coordinates

$$\left(r^{1/n},\frac{\varphi}{n}\right)$$
, $\left(r^{1/n},\frac{\varphi+2\pi}{n}\right)$, ..., $\left(r^{1/n},\frac{\varphi+2\pi(n-1)}{n}\right)$

Note: Some of the angles


$$\frac{\varphi}{n}, \frac{\varphi+2\pi}{n}, \dots, \frac{\varphi+2\pi(n-1)}{n}$$

are greater than π . We subtract 2π from these angles to obtain angles in the prescribed interval $(-\pi, \pi]$.

Example w = -1 has polar coordinates $(1, \pi)$. Hence its square roots have polar coordinates $(1, \frac{\pi}{2})$ and $(1, -\frac{\pi}{2})$, corresponding to $z_{0,1} = \pm i$. The cubic roots of -1 have length 1 and arguments $\frac{\pi}{3}, \pi, \frac{-\pi}{3}$, yielding

$$z_0 = \frac{1}{2} + i\frac{\sqrt{3}}{2}, \ z_1 = -1, \ z_2 = \frac{1}{2} - i\frac{\sqrt{3}}{2}$$

Left: Square roots, right: cubic roots of -1

Note: An arbitrary quadratic equation

$$z^2 + az + b = 0 \quad ,$$

with $a, b \in \mathbb{C}$, has at least one complex solution. Just as for real coefficients, we can derive the formula

$$z_{1,2} = \frac{a \pm \sqrt{a^2 - 4b}}{2}$$
,

describing all possible solutions, and the root can now be evaluated for every choice of a and b.

Remark: In fact, much more is true. Given any polynomial

$$f(z) = z^{n} + a_{n-1}z^{n-1} + \ldots + a_{1}z + a_{0}$$

with $a_{n-1}, \ldots, a_0 \in \mathbb{C}$, there exists $z \in \mathbb{C}$ with f(z) = 0.

- Complex numbers and operations on them: Sums, products, inverses of complex numbers
- Imaginary and real parts, complex conjugates
- Polar coordinates: Modulus, argument and their uses
- Geometric interpretation of complex numbers and operations on them
- Computation of powers and roots of complex numbers