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Week 1: Complex Numbers, Trigonometric
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Motivation 1

Recall from last week:

I Extensions of number domains (e.g., from N to Z, from Z to Q,
from Q to R) are motivated partly by the desire to extend opera-
tions (e.g., subtraction, division, powers).

I A negative real number does not have a square root in R.

Definition. The set C of complex numbers is defined as

C = {(x, y) : x, y ∈ R} .

where (x, y) denotes an ordered pair of real numbers.
Note: Two ordered pairs (a, b) and (x, y) are equal if and only if a = x

and b = y. In particular, (a, b) = (b, a) only if a = b.
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Operations on complex numbers 2

Definition. Let (a, b), (x, y) ∈ C.

I The sum resp. difference is defined as

(a, b) + (x, y) = (a + x, b + y) , (a, b)− (x, y) = (a− x, b− y) . (1)

I The product is defined as

(a, b) · (x, y) = (ax− by, ay + bx) . (2)
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Interpretation of complex numbers 3

Pairs are useful for the rigourous definition of complex numbers. For
carrying out computations with complex numbers, other notations are
preferred.
I We identify (x, 0) ∈ C with x ∈ R.

Note that now, x + y could mean the usual sum of real numbers,
or the result of the addition (x, 0) + (y, 0) in C. However, the latter
is (x + y, 0), which we identify with x + y.

I We define the imaginary unit as i := (0, 1) ∈ C. Note that i2 = −1.

I We can now write arbitrary complex numbers as

z = (x, y) = (x, 0) + (0, y) = x + (0, 1) · y = x + iy .

I In the new notation, sum and product become

(a+ib)+(x+iy) = (a+x)+i(b+y) , (a+ib)·(x+iy) = (ax−by)+i(ay+bx) .

(3)
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Axioms for sums and products 4

Theorem. All axioms regarding sums (differences) and products in R
carry over to C. In particular, the following properties can be verified
directly.

I Addition is commutative and associative.

I Multiplication is commutative and associative.

I The distributive law relating addition and multiplication holds.

I Using the identifications from above, specifically 1 = (1, 0) and
0 = (0, 0), we find for arbitrary z ∈ C

z = z · 1 = z + 0 , z · 0 = 0 .
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Complex conjugate, Real and Imaginary part, Modulus 5

Definition. For z = x + iy ∈ C, we introduce the following notions:

Re(z) = x , the real part of z (4)
Im(z) = y , the imaginary part of z (5)
z = x− iy , the complex conjugate of z (6)

|z| =
√

zz =
√

x2 + y2 , the modulus or length of z (7)

Note that x2 + y2 ≥ 0, hence |z| is well-defined and positive. |z| is
also called absolute value of z.

Useful formulas:

z = Re(z) + iIm(z) , Re(z) =
z + z

2
, Im(z) =

z − z

2
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Complex division 6

Theorem. For z = x + iy ∈ C \ {0}, write

z−1 = |z|−2 · z .

Then

z · z−1 = z · z

|z|2
=

zz

|z|2
=
|z|2

|z|2
= 1 . (8)

Remarks: This allows to define division by z ∈ C \ {0}, via

w

z
= w · z−1

All properties known for division in R remain true in C.
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Properties of the modulus 7

Note that for a real number x = x + i0, one computes |x + i0| =√
x2 + 02 = |x|. Hence the modulus of a real number is the same,

whether we regard x as a real or complex number.

Theorem. (Rules for the absolute value:)
Let w, z ∈ C
I |z| ≥ 0, and |z| = 0 ⇔ z = 0.

I |wz| = |w| |z|.
I |z| = | − z| = |z|
I |w + z| ≤ |w| + |z|.

The last property is known as the triangle inequality. Useful reformu-
lations are

| |w| − |z| | ≤ |w + z| ≤ |w| + |z| .
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Computing real and imaginary parts of a quotient 8

General procedure: Given a quotient z =
x + iy
a + ib

, multiply denomina-
tor and enumerator with the complex conjugate of the enumerator,

z =
x + iy

a + ib
=

(x + iy)(a− ib)

(a + ib)(a− ib)
=

(x + iy)(a− ib)

a2 + b2
.

Now the denominator is a real number, and we only need to compute
the enumerator using formula (3).

Example: Computing the real and imaginary part of z = 5+3i
1−2i:

z =
5 + 3i

1− 2i
=

(5 + 3i)(1 + 2i)

(1− 2i)(1 + 2i)
=
−1 + 13i

5
= −1

5
+

13

5
i.

Hence Re(z) = 1
5 and Im(z) = 13

5 .
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Summary: Algebraic Properties of C 9

So far, we have seen that the set C further expands our number
domain:

∅ ⊂ N ⊂ N0 ⊂ Z ⊂ Q ⊂ R ⊂ C

Algebraic operations, eg. taking sums, differences, products, quo-
tients, are extended to C, and the same computational rules as for R
apply to C also. (Exception: monotonicity).

Note: We can now take the square root of −1:

i2 = (0 + i · 1) · (0 + i · 1) = 02 − 12 + 1 · 0 + 0 · 1 = −1
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Geometric interpretation of complex numbers 10

A complex number a + ib is a pair of coordinates describing a point
(a, b) in the plane. The modulus is the distance to the origin. The
a-axis is called real axis, the b-axis is the imaginary axis.
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Some more examples 11
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Geometric interpretation of addition 12

The sum of two complex numbers z1, z2 corresponds to the diagonal
of the parallelogram with sides z1 and z2.
Triangle inequality: The sum of the sidelengths is greater than or
equal to the length of the diagonal.
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Geometric interpretation of complex conjugate 13

Taking complex conjugates or negatives of complex numbers amounts
to reflection about a coordinate axis or about the origin
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Trigonometric functions 14

The geometric interpretation of the product requires polar coordi-
nates and trigonometric functions.
Consider a complex number z = a + ib with

1 = |z| =
√

a2 + b2

z describes an angle ϕ with the real axis, and |z| = 1 leads to the
equations

a = cos(ϕ) , b = sin(ϕ)
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Polar coordinates 15

For a general nonzero complex number z = a + ib, we write z = |z|w,
where w has length 1. We then get the same picture, except that all
lengths are multiplied by |z|:

Thus, every z ∈ C \ {0}, can be written (uniquely) as

z = r (cos(ϕ) + i sin(ϕ)) , where r > 0 and − π < ϕ ≤ π .

(r, ϕ) are the polar coordinates of z, with r = |z|, the length of z.
ϕ is called argument of z, denoted arg(z).
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Plots of sine and cosine 16

Plots of sine and cosine:

Useful values of sine and cosine:
α 0 π

6
π
4

π
3

π
2 π

sin(α) 0 1
2

√
2

2

√
3

2 1 0

cos(α) 1
√

3
2

√
2

2
1
2 0 −1
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Important properties of sine and cosine 17

Theorem.

I Symmetry: For all angles α

sin(−α) = − sin(α) , cos(−α) = cos(α) , sin(α +
π

2
) = cos(α)

I Periodicity:For all angles α

sin(α) = sin(α + 2π) , cos(α) = cos(α + 2π) .

I For all angles α

sin(α)2 + cos(α)2 = 1

I Addition Theorem. For all α, β ∈ R,

sin(α + β) = sin(α) cos(β) + sin(β) cos(α) (9)
cos(α + β) = cos(α) cos(β)− sin(β) sin(α) (10)
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Tangent and Arctangent 18

Definition. For x ∈ R, we define the tangent function as

tan(x) =
sin(x)

cos(x)

Properties of the tangent function:

1. tan is π-periodic. It is undefined for all x = kπ + π/2, with k ∈ Z.

2. For all x ∈ R, tan(−x) = − tan(x).

3. For every y ∈ R there is a unique x with −π/2 < x < π/2 such
that y = tan(x).

4. Let y ∈ R. Suppose that −π/2 < x < π/2 is the unique number
with tan(x) = y. We define arctan(y) = x, the arctangent of y.
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Plot of tangent 19

Useful values of tan:

α 0 π
6

π
4

π
3

π
2 π

tan(α) 0 1√
3

1
√

3 n.d. 0
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Geometric interpretation of the product 20

Let z1 = r1(cos(ϕ1) + i sin(ϕ1)) and w = r2(cos(ϕ2) + i sin(ϕ2)). Then

z1z2 = r1r2(cos(ϕ1) cos(ϕ2)− sin(ϕ1) sin(ϕ2)

+ i (cos(ϕ1) sin(ϕ2) + cos(ϕ2) sin(ϕ1)))

Now the addition theorem for trigonometric functions yields

z1z2 = r1r2︸︷︷︸
= |z1z2|

(cos( ϕ1 + ϕ2︸ ︷︷ ︸
arg(z1z2)

) + i sin(ϕ1 + ϕ2)) ,

i.e., z1z2 has polar coordinates (r1r2, ϕ1 + ϕ2). Hence, one computes
the polar coordinates of z1 · z2 by

I multiplying the lengths of z1 and z2, and

I adding the arguments of z1 and z2

(possibly adding or subtracting 2π to remain in (−π, π]))
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Illustration of multiplication 21
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Example: Multiplication by powers of i 22

i has polar coordinates (0, π/2). Hence multiplying by i is the same
as rotating by 90 degrees counterclockwise:
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Computing polar coordinates 23

Given a complex number z = a + ib, its length is easily computed as

|z| =
√

a2 + b2 .

The argument is defined as −π < α ≤ π such that

|z| cos(α) = a , |z| sin(α) = b .

Hence tan(α) = b
a is a necessary requirement.

General formula: The argument of z = a + ib is given by

α =



arctan(b/a) a > 0

π − arctan(b/a) a < 0 < b

−π + arctan(b/a) a, b < 0

0 a = 0 ∧ b > 0

π a = 0 ∧ b < 0
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Application: Integer powers and inverse 24

Theorem. (DeMoivre)
Let n ∈ N, and z = r(cos(ϕ) + i sin(ϕ)). Then

zn = rn(cos(nϕ) + i sin(nϕ))

i.e., zn has polar coordinates (rn, nϕ).

Inverse: 1 = (1, 0) ∈ C has length 1 and argument α = 0. Hence, for
arbitrary z ∈ C \ {0}

I 1 = |z · z−1| = |z| |z−1|, hence |z−1| = 1
|z|

I the arguments add up to zero, hence z−1 has argument −ϕ

therefore the polar coordinates of z−1 are (r−1,−ϕ).

⇒ DeMoivre’s theorem holds for all n ∈ Z
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Application: Taking roots 25

Let n ∈ N and w ∈ C \ {0}, with polar coordinates (r, ϕ). We want to
find all solutions of the equation

zn = w .

By periodicity of sin, cos, there are precisely n such complex numbers,
having polar coordinates(

r1/n,
ϕ

n

)
,

(
r1/n,

ϕ + 2π

n

)
, . . . ,

(
r1/n,

ϕ + 2π(n− 1)

n

)
.

Note: Some of the angles
ϕ

n
,
ϕ + 2π

n
, . . . ,

ϕ + 2π(n− 1)

n

are greater than π. We subtract 2π from these angles to obtain angles
in the prescribed interval (−π, π].
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Examples: Roots of −1 26

Example w = −1 has polar coordinates (1, π). Hence its square roots
have polar coordinates (1, π

2) and (1,−π
2), corresponding to z0,1 = ±i.

The cubic roots of −1 have length 1 and arguments π
3 , π, −π

3 , yielding

z0 =
1

2
+ i

√
3

2
, z1 = −1 , z2 =

1

2
− i

√
3

2

Left: Square roots, right: cubic roots of −1
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Further examples: Quadratic equation 27

Note: An arbitrary quadratic equation

z2 + az + b = 0 ,

with a, b ∈ C, has at least one complex solution. Just as for real
coefficients, we can derive the formula

z1,2 =
a±

√
a2 − 4b

2
,

describing all possible solutions, and the root can now be evaluated
for every choice of a and b.

Remark: In fact, much more is true. Given any polynomial

f (z) = zn + an−1z
n−1 + . . . + a1z + a0

with an−1, . . . , a0 ∈ C, there exists z ∈ C with f (z) = 0.



J

I

Summary 28

I Complex numbers and operations on them: Sums, products, in-
verses of complex numbers

I Imaginary and real parts, complex conjugates

I Polar coordinates: Modulus, argument and their uses

I Geometric interpretation of complex numbers and operations on
them

I Computation of powers and roots of complex numbers


