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Motivation: Computing flow from flow rates 1

We observe the flow of water through a drain, which varies with time.

The result is a flow rate, in litres/second, continuously recorded over
a time interval [a, b]. From these data, we want to determine the
total amount A of water that has passed through the valve during the
interval.
This value corresponds to the area under the graph of f
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Answer for constant rate 2

If the flow is constant, say equal to c, the answer is easily obtained:

A = (b− a) · c

This corresponds to the formula

area = width · height .

for rectangular areas.

The idea to calculate the area under arbitrary graphs is to approxi-
mate the graph by piecewise constant functions.
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Area under the graph: Piecewise constant functions 3

A piecewise constant function or step function is a function f : [a, b] →
R that consists of finitely many constant pieces

Here, the region under the graph is made up out of rectangles and
its area is computed by summing the areas of the rectangles.
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Partition 4

Definition. Let I = [a, b] ⊂ R be some interval. A partition of I is given
by a finite subset P = {x0, . . . , xn} satisfying {a, b} ∈ P. Without loss
of generality,

a = x0 < x1 < x2 < . . . < xn = b .

Example: The set P = {0, 0.3, 0.5, 0.8, 1.0} defines a partition of the
interval [0, 1].
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Approximation by step functions 5

Definition.
Let f : [a, b] → R be a function, and P = {x0, x1, . . . , xn} a partition.
We define

Mk(f ) = sup{f (x) : xk < x < xk+1}
Mk(f ) = inf{f (x) : xk < x < xk+1}

Interpretation: Mk and Mk provide optimal approximation of the graph
of f by step functions with jumps in P, one from above, one from be-
low.
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Example: Approximation from above 6

A function defined on [0, 3], partition P = {0, 1, 2, 3}.
Blue: Function graph, Black: Step function associated to Mk
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Example: Approximation from below 7

A function defined on [0, 3], partition P = {0, 1, 2, 3}.
Blue: Function graph, Black: Step function associated to Mk



J

I

Upper and lower sum 8

Definition. Let f : [a, b] → R, and let P = {x0, x1, . . . , xn} be a partition
of [a, b], with a = x0 < x1 < . . . < xn = b.. We write

S(P) =

n∑
k=1

Mk−1(xk − xk−1)

S(P) =

n∑
k=1

Mk−1(xk − xk−1)

Interpretation:

I The area below the step function with values Mk−1 contains the
area below the graph of f . Hence S(P) is greater or equal to the
area below the graph of f .

I Likewise: S(P) is smaller or equal to the area below the graph of
f .
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Graphical interpretation of upper and lower sum 9

The difference S(P)−S(P) is the area between upper and lower step
function approximation
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Refinement of a partition 10

Definition. Let P1,P2 be two partitions of [a, b]. Then P1 is called
refinement of P2 if P1 ⊃ P2.

Interpretation:

I If P1 ⊃ P2, then

S(P2) ≤ S(P1) ≤ S(P1) ≤ S(P2)

Hence the area between upper and lower approximation decreases.

I The two should approximate the same value, as the partition gets
finer and finer.
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Illustration for refinement 11

A function f : [0, 3] → R, partition {0, 1, 2, 3}, lower and upper approx-
imation
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Illustration for refinement 12

The same function, lower and upper approximation for the refinement
{0, 0.5, 0.7, 0.8, 0.9, 1, 1.3, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.2, 2.4, 2.6, 2.8, 3}.
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Riemann integrable function 13

Definition. The function f : [a, b] → R is called (Riemann) integrable
if for every ε > 0 there is a partition P of [a, b] such that

S(P)− S(P) < ε

Note: This implies
S(P ′)− S(P ′) < ε

for every refinement P ′ of P.
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Convergence of upper and lower sums 14

Theorem 1.
Let f be a Riemann integrable function. Let Pn be a sequence of
partitions satisfying δn → 0, where δn is the maximal distance of two
neighboring elements of Pn.
Then

I(f ) = lim
n→∞

S(Pn)

exists, with
I(f ) = lim

n→∞
S(Pn).

Moreover, I(f ) is the same for all sequences of partitions with δn → 0.
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Definition of the Riemann integral 15

Definition. If f is integrable, I(f ) as in Theorem 1. I(f ) is called the
(Riemann) integral of f over [a, b], and denoted as∫ b

a

f (x)dx .

a is called lower bound of the integral, b is called upper bound of the
integral, and f is called the integrand.
Furthermore, we define, for a < b,∫ a

b

f (x)dx = −
∫ b

a

f (x)dx

as well as ∫ a

a

f (x)dx = 0
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Criteria for Riemann integrability 16

Sufficient conditions:

I If f is continuous on [a, b], then f is integrable.

I If f is monotonic and bounded on [a, b], then f is integrable.

Example: A bounded function that is not integrable:

f : [0, 1] → R , f(x) =

{
1 x ∈ Q
−1 x 6∈ Q

For every partition P, one finds

S(P) = 1 6= −1 = S(P) .
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Properties of the Riemann integral 17

Theorem 2.
Let f, g be integrable over the interval with bounds a, b, let s ∈ R

I sf is integrable, with
∫ b

a sf (x)dx = s
∫ b

a f (x)dx.

I f + g is integrable, with
∫ b

a f (x) + g(x)dx =
∫ b

a f (x)dx +
∫ b

a g(x)dx.

I Let c in R be such that f is integrable over [b, c]. Then f is inte-
grable over [a, c], with∫ c

a

f (x)dx =

∫ b

a

f (x)dx +

∫ c

b

f (x)dx .

I If f is integrable, then |f | is integrable as well, with∣∣∣∣∫ b

a

f (x)dx

∣∣∣∣ ≤ ∫ b

a

|f (x)|dx
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Monotonicity of integrals 18

Theorem 3.
Let a ≤ b, let f : [a, b] → R be integrable and bounded, with

m ≤ f (x) ≤ M , for all x ∈ [a, b]

Then

m(b− a) ≤
∫ b

a

f (x)dx ≤ M(b− a) .

This applies in particular, when f is continuous on [a, b], and

m = min
x∈[a,b]

f (x) , M = max
x∈[a,b]

f (x) .

More generally, if f, g : [a, b] → R are integrable, with f (x) ≤ g(x) for
all x ∈ [a, b], then ∫ b

a

f (x)dx ≤
∫ b

a

g(x)dx .
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Illustration for the estimate 19
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Fundamental Theorem of Calculus 20

Theorem 4.
Let f : [a, b] → R be continuous. We define

F : [a, b] → R , F (y) =

∫ y

a

f (x)dx

Then F is continuous on [a, b], differentiable on (a, b), with

F ′(x) = f (x) , ∀x ∈ (a, b) .

Conversely, suppose that G : [a, b] → R is continuous, differentiable
on (a, b) with G′ = f . Then the integral is computed as∫ b

a

f (x)dx = G|ba := G(b)−G(a)
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Integration and antiderivatives 21

Remarks: Let f : [a, b] → R be a continuous function.

I A differentiable function F with F ′ = f is called antiderivative or
primitive of f . Hence f has a primitive given by

F (y) =

∫ y

a

f (x)dx .

I Two primitives F, G of f only differ by a constant: F (x) = G(x)− c,
with c ∈ R fixed. By letting

F (y) =

∫ y

a

f (x)dx

one obtains the unique primitive of f satisfying F (a) = 0.

I It is customary to denote primitives as F =
∫

f (x)dx (without
bounds), and refer to them as indefinite integrals of f .



J

I

Application: The length of a curve 22

Definition.
Let f : [a, b] → Rn be given, i.e.,

f (x) = (f1(x), f2(x), . . . , fn(x))T .

The set
C = {f (x) : x ∈ [a, b]}

is called a curve in Rn, and f is called parameterization of C.
We assume that all fi are continuously differentiable on (a, b) and
continuous on [a, b]. We define the length of C as

l(C) =

∫ b

a

√
f ′1(x)2 + f ′2(x)2 + . . . + f ′n(x)2dx
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Example: Circumference of the circle 23

We consider the map f : [0, 2π] → R2, with f (x) = (sin(x), cos(x)). The
resulting curve is the unit circle.

We compute
f ′1(x) = cos(x) , f ′2(x) = − sin(x)

and thus, using sin2 + cos2 = 1,∫ 2π

0

√
f ′1(x)2 + f ′2(x)2dx =

∫ 2π

0

1dx = 2π .
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Example: Length of a graph 24

We want to determine the length of the graph Gf of f (t) = t2, for
t ∈ [0, 1]. Gf is parameterized by

g : [0, 1] → R2 , g(t) = (t, t2)T .

Using g′1(t) = 1, g′2(t) = 2t, we obtain

l(Gf) =

∫ 1

0

√
1 + 4t2dt .

One can check that

F (t) =
1

4

(
2t
√

1 + 4t2 + ln(2t +
√

1 + 4t2))
)

is a primitive of g(t) =
√

1 + 4t2. Hence,

l(Gf) = F |10 =
1

4

(
2
√

5 + ln(2 +
√

5)
)
− 0
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Summary 25

I Definition and interpretation of integrals; area under the graph

I Properties of the integral: Linearity, monotonicity

I Evaluation of integrals via antiderivatives
( New problem: How to obtain antiderivatives)

I Application of integrals: Curve length


