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Motivation: Computing flow from flow rates

We observe the flow of water through a drain, which varies with time.
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The result is a flow rate, in litres/second, continuously recorded over
a time interval [a,b]. From these data, we want to determine the
total amount A of water that has passed through the valve during the
interval.

This value corresponds to the area under the graph of f



Answer for constant rate

If the flow is constant, say equal to ¢, the answer is easily obtained:
A=(b—a)-c
This corresponds to the formula
area, = width - height .

for rectangular areas.

The idea to calculate the area under arbitrary graphs is to approxi-
mate the graph by piecewise constant functions.



Area under the graph: Piecewise constant functions

A piecewise constant function or step function is a function f : |a, b] —
R that consists of finitely many constant pieces

10

8_

Here, the region under the graph is made up out of rectangles and
its area is computed by summing the areas of the rectangles.



Partition

Definition. Let I = [a,b] C R be some interval. A partition of I is given
by a finite subset P = {xz, ..., x,} satisfying {a, b} € P. Without loss
of generality,

a=Tp< T <9< ...<x,=0>.

Example: The set P = {0,0.3,0.5,0.8,1.0} defines a partition of the
interval |0, 1].



Approximation by step functions

Definition.
Let f : [a,b] — R be a function, and P = {xg, xy,...,x,} a partition.
We define

= sup{f(z): o <o < xps1}
Mi(f) = mf{f(z):xp <z < xpi1}

= 5
=
|

Interpretation: A}, and M, provide optimal approximation of the graph
of f by step functions with jumps in P, one from above, one from be-
low.



Example: Approximation from above

A function defined on [0, 3|, partition P = {0, 1,2, 3}.
Blue: Function graph, Black: Step function associated to M.
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Example: Approximation from below

A function defined on [0, 3], partition P = {0, 1, 2, 3}.
Blue: Function graph, Black: Step function associated to M,

10

8,




Upper and lower sum 8

Definition. Let f : [a,b] — R, and let P = {xq, 21, ..., z,} be a partition
of [a,b], witha = xy < 21 < ... <z, = b.. We write

g(P) = ZMk—1<xk — SCk_l)

S(P) = ) Mi(z — 2p1)

Interpretation:

» The area below the step function with values M;._; contains the
area below the graph of f. Hence S(P) is greater or equal to the
area below the graph of f.

» Likewise: S(P) is smaller or equal to the area below the graph of

f-



Graphical interpretation of upper and lower sum

The difference S(P)—S(P) is the area between upper and lower step
function approximation
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Refinement of a partition 10

Definition. Let Py, P, be two partitions of [a,b]. Then P, is called
refinement of Py if P; D Ps.

Interpretation:
» If P; D P», then
S(Ps) < S(P1) < S(Py) < S(Po)

Hence the area between upper and lower approximation decreases.

» The two should approximate the same value, as the partition gets
finer and finer.



llustration for refinement 11

A function f : |0, 3] — R, partition {0, 1,2, 3}, lower and upper approx-
imation
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llustration for refinement 12

The same function, lower and upper approximation for the refinement
{0,0.5,0.7,0.8,0.9,1,1.3,1.5,1.6,1.7,1.8,1.9,2,2.2,2.4,2.6,2.8, 3}.
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Riemann integrable function 13

Definition. The function f : [a,b] — R is called (Riemann) integrable
if for every ¢ > 0 there is a partition P of [a, b] such that

S(P)—S(P) <e

Note: This implies
S(P')—S(P) <e

for every refinement P’ of P.



Convergence of upper and lower sums 14

Theorem 1.

Let f be a Riemann integrable function. Let P, be a sequence of
partitions satisfying 9, — 0, where §,, is the maximal distance of two
neighboring elements of P,,.

Then

I(f) = lim S(P,)

n—oo

exists, with
I(f) = lim S(P,).

n—oo

Moreover, I(f) is the same for all sequences of partitions with 9,, — 0.



Definition of the Riemann integral 15

Definition. If f is integrable, I(f) as in Theorem 1. I(f) is called the
(Riemann) integral of f over [a, b], and denoted as

/f

a is called lower bound of the integral, b is called upper bound of the
integral, and f is called the integrand.
Furthermore, we define, for a < b,

/b " ) da = — / )
[ ey -

as well as



Criteria for Riemann integrability

Sufficient conditions:
» If fis continuous on [a, b], then f is integrable.

» If fis monotonic and bounded on [a, b], then f is integrable.

Example: A bounded function that is not integrable:

1 2€Q

f:[O,l]ﬂR,f(x)z{_l 1 dQ

For every partition P, one finds



Properties of the Riemann integral 17

Theorem 2.
Let f, g be integrable over the interval with bounds a, b, let s € R

» sf is integrable, with fab sf(x)dr = s fab f(z)dx
» f + g is integrable, with fab flz)+ g(x)dr = fab f(z)dx + fabg(a:')dx

» Let cin R be such that f is integrable over [b,¢]. Then f is inte-
grable over [a, ¢], with

/f dm—/f dx+/f

» If f is integrable, then |f| is integrable as well, with

/ ' o) < / | Fa)ld




Monotonicity of integrals 18

Theorem 3.
Leta < b, let f: [a,b] — R be integrable and bounded, with

m < f(x) < M, forall x € [a,b]
Then ;
m(b—a) < / flx)de < M(b—a).
This applies in particular, when f is continuous on [a, b], and

m = min f(x), M = max f(x).
r€|a,b] r€|a,b|

More generally, if f, g : [a,b] — R are integrable, with f(x) < g(x) for

all z € |a,b], then b ,
/ flz)dx < / g(x)dx .



lllustration for the estimate
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Fundamental Theorem of Calculus 20

Theorem 4.
Let f : [a,b] — R be continuous. We define

)
F :la,b] = R, F(y) :/ f(z)dx
Then F'is continuous on [a, b], differentiable on (a, b), with
F'(z) = f(z), Vz € (a,b) .

Conversely, suppose that G : [a,b] — R is continuous, differentiable
on (a,b) with G’ = f. Then the integral is computed as

b
/ f(x)dz = GJ' = G(b) - Gla)



Integration and antiderivatives 21

Remarks: Let f : [a,b] — R be a continuous function.

» A differentiable function F with /” = f is called antiderivative or
primitive of f. Hence f has a primitive given by

Fio)= [ fla)ds

» Two primitives F, G of f only differ by a constant: F(z) = G(x) —¢,
with ¢ € R fixed. By letting

F)= [ fla)ds

one obtains the unique primitive of f satisfying F'(a) = 0.

» It is customary to denote primitives as F = [ f(x)dx (without
bounds), and refer to them as indefinite integrals of f.



Application: The length of a curve 22

Definition.
Let f : [a,b] — R" be given, i.e.,

f(@) = (ful2), folz), .., ful@)".

The set
C={f(x):z€la,bl}
is called a curve in R”, and f is called parameterization of C.

We assume that all f; are continuously differentiable on (a,b) and
continuous on [a, b]. We define the length of C as

b
IC) = / VA@E T @l 1 flaPds



Example: Circumference of the circle 23

We consider the map f : [0, 27] — R?, with f(x) = (sin(z), cos(z)). The
resulting curve is the unit circle.

We compute
fi(z) = cos(x) , fa(z) = —sin(z)

and thus, using sin? + cos? = 1,

2m
\/fl + f2 de = / 1d$ = 27T .
0



Example: Length of a graph 24

We want to determine the length of the graph G of f(t) = ¢, for
t €10,1]. Gy is parameterized by

g:[0,1] - R?, g(t) = (t,)" .
Using ¢} (t) = 1, g5(t) = 2t, we obtain
(Gy) = /O1 V1 +4t2dt .
One can check that
F(t) = i (215\/@ + In(2t + \/@)))
is a primitive of ¢(t) = v/1 + 4¢2. Hence,

UGy) = FIb = i (25 + (2 + V5)) — 0



Summary

» Definition and interpretation of integrals; area under the graph
» Properties of the integral: Linearity, monotonicity

» Evaluation of integrals via antiderivatives
(~» New problem: How to obtain antiderivatives)

» Application of integrals: Curve length
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