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Week 11: Integration techniques
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Motivation 1

Recall from last week: An integral∫ b

a

f (x)dx

can be computed in two steps:

I Determine a primitive F of f ;

I Evaluate at the boundaries:
∫ b

a f (x)dx = F |ba = F (b) − F (a).

Unfortunately, there is no simple general procedure for the computa-
tion of primitives.

Methods for the simplification of integrals are obtained by reading
differentiation rules backwards.
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Integrating polynomials 2

Recall: Monomials f (x) = xn are easily differentiated: f ′(x) = nxn−1.
Conversely, a primitive of f is obtained as F (x) = xn+1

n+1 . As a conse-
quence, a primitive of a polynomial

f (x) = akx
k + ak−1x

k−1 + . . . + a0

is obtained as

F (x) =
ak

k + 1
xk+1 +

ak−1

k
xk + . . . + a0x + c ,

where c ∈ R is chosen arbitrarily.

Note: The function F (x) = xs+1

s+1 is in fact a primitive for f (x) = xs, if
s ∈ R \ {−1}. The primitive of f (x) = x−1 is F (x) = ln(|x|).
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Product rule and integration by parts 3

Recall: The product rule for derivatives is

(fg)′(x) = f ′(x)g(x) + f (x)g′(x) .

We use this for the treatment of integrands of the form f ′g:∫ b

a

f ′(x)g(x)dx =

∫ b

a

(fg)′(x)dx−
∫ b

a

f (x)g′(x)dx

= f (b)g(b) − f (a)g(a) −
∫ b

a

f (x)g′(x)dx

For indefinite integrals, the rule becomes∫
f ′(x)g(x)dx = fg −

∫
f (x)g′(x)dx .

Rule of thumb: Integration by parts is useful whenever fg′ is simpler
to integrate than f ′g.
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Example for integration by parts 4

Example: Using f (x) = ex and g(x) = x2, we find∫ 1

0

exx2dx =

∫ 1

0

f ′(x)g(x)dx

= x2ex|10 −
∫ 1

0

2xexdx

= e− 2

∫ 1

0

xexdx

We apply integration by parts again, this time with f (x) = ex and
g(x) = x, to obtain

e− 2

∫ 1

0

xexdx = e− 2(xex)|10 + 2

∫ 1

0

exdx

= e− 2(1 · e1 − 0e0) + 2ex|10 = e− 2
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Further example for integration by parts 5

Example: We want to determine a primitive for ln(x), by evaluating
the integral

F (y) =

∫ y

1

ln(x)dx .

Integration by parts of 1 · ln(x) yields∫ y

1

ln(x)dx = x ln(x)|y1 −
∫ y

1

x
1

x
dx

= y ln(y) −
∫ y

1

dx

= y ln(y) − y + 1
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Chain rule and substitution 6

Recall: The chain rule for derivatives states that

(F ◦ g)(x) = F ′(g(x))g′(x) .

This translates to the following integration rule:
Substitution rule. Suppose that g : [a, b] → R is continuously differen-
tiable, and that f : g([a, b]) → R is integrable. Then∫ b

a

f (g(x))g′(x)dx =

∫ g(b)

g(a)

f (y)dy .

Proof: If F is a primitive of f , then H(x) = F (g(x)) is a primitive of
f (g(x))g′(x). Therefore∫ b

a

f (g(x))g′(x)dx = H(b) −H(a) = F (g(b)) − F (g(a)) =

∫ g(b)

g(a)

f (y)dy
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Substitution and change of variables 7

It is customary to think of g(x) as a new variable y replacing x.
y ranges from g(a) to g(b) as x ranges from a to b. Moreover,

dy

dx
= g′(x) , hence formally dy =

dy

dx
dx = g′(x)dx

which results in the formula∫ b

a

f (y)dy =

∫ y(b)

y(a)

f (x)dx .

Rule of thumb: Substitution is useful, whenever the integrand can be
written as f ′(x) ·G(x), where f and G are suitable functions, and G(x)

can be expressed in terms of f (x).
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Examples for substitution 8

First example: We wish to compute the integral∫ 2

0

x sin(x2) dx =
1

2

∫ 2

0

sin(x2)2xdx =
1

2

∫ 2

0

f (g(x))g′(x)dx ,

with f (y) = sin(y) and g(x) = x2. Hence,

1

2

∫ 2

0

sin(x2)2xdx =
1

2

∫ 22

02
sin(y)dy =

1

2
(1 − cos(4))

Second example: Let f (x) = g′(x)
g(x) , with g continuously differentiable

and non-vanishing on [a, b]. Then F (x) = ln(|g(x)|) + c is a primitive
of f , hence ∫ b

a

g′(x)

g(x)
dx = ln(|g(b)|) − ln(|g(a)|)



J

I

Example: Substitution for an indefinite integral 9

We want to determine F =
∫

(x + 2) sin(x2 + 4x− 6)dx. Substituting

y = x2 + 4x− 6 , dy = (2x + 4)dx , (x + 2)dx =
dy

2

we find

F (x) =

∫
f (x)dx =

∫
sin(y)

dy

2
= −cos(y)

2
= −cos(x2 + 4x− 6)

2
.

Remark: The new variable y serves as a reminder that we must carry
out the substitution before evaluating the integral.
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Integration of rational functions 10

Aim of the following: A recipe for the integration of functions of the
type

f (x) =
P (x)

Q(x)
=

smxm + sm−1x
m−1 + . . . + s0

bnxn + bn−1xn−1 + . . . + b0

Note: One can always write

f (x) = c`x
` + . . . + c0 +

akx
k + ak−1x

k−1 + . . . + a0

bnxn + bn−1xn−1 + . . . + b0
,

with k < n. We already know how to integrate the polynomial part.

Strategy:

I Write f as a sum of manageable pieces;

I devise a method to integrate the manageable pieces.
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Decomposition into manageable pieces 11

Theorem. Let

f (x) =
P (x)

Q(x)
=

akx
k + ak−1x

k−1 + . . . + a0

bnxn + bn−1xn−1 + . . . + b0
.

Then Q has a unique factorization

Q(x) = C(x− ξ1)
k1 · · · (x− ξs)

ks(x2 + β1x + γ1)
l1 · · · (x2 + βtx + γt)

lt .

with suitable numbers s, t, ki, li ∈ N, ξi, βi, γi ∈ R, satisfying in addition

4γi − β2
i > 0 (i = 1, . . . , t) .

This condition is equivalent to requiring that x2 + βix + γi 6= 0, for all
x ∈ R and all i = 1, . . . , t.
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Decomposition into manageable pieces continued 12

Let f, P, Q be as on the previous slide, with k < n (see slide 10).
Then there exist unique coefficients Ai,j, Bi,j, Ci,j such that

f (x) =
A1,1

(x− ξ1)1
+

A1,2

(x− ξ1)2
+ . . . +

A1,k1

(x− ξ1)k1

+
A2,1

(x− ξ2)1
+

A2,2

(x− ξ2)2
+ . . . +

A2,k2

(x− ξ2)k2

+ . . .

+
As,1

(x− ξs)1
+

As,2

(x− ξs)2
+ . . . +

As,ks

(x− ξs)ks

+
B1,1x + C1,1

(x2 + β1x + γ1)1
+ . . . +

B1,l1x + C1,l1

(x2 + β1x + γ1)l1
+ . . .

+
Bt,1x + Ct,1

(x2 + βtx + γt)1
+ . . . +

Bt,ltx + Ct,lt

(x2 + βtx + γt)lt

This sum is called partial fraction decomposition of f .
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Example 13

Suppose that

f (x) =
1 + x2

(x + 1)3(x2 + x + 1)2

Then the partial fraction decomposition of f is of the form

f (x) =
A1

x + 1
+

A2

(x + 1)2
+

A3

(x + 1)3

+
B1x + C1

x2 + x + 1
+

B2x + C2

(x2 + x + 1)2

Hence we need to determine 7 coefficients, A1, . . . , C2.

Note: The enumerator does not influence the form of the partial
fraction decomposition. It is needed to determine the coefficients
A1, A2, . . ..
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Primitives for manageable pieces 14

We still need primitives for the partial fractions:

A

(x− ξ)n
,

Bx + C

(x2 + βx + γ)n

with 4γ − β2 > 0.

I The function

f (x) =
1

x− ξ
has the primitive F (x) = ln(|x− ξ|) .

I For n > 1, the function

f (x) =
1

(x− ξ)n
has the primitive F (x) = − 1

(n− 1)(x− ξ)n−1
.
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Primitives for manageable pieces, continued 15

Suppose that 4γ − β2 > 0. Then f (x) = Bx+C
x2+βx+γ

has the primitive

F (x) =
B

2
ln(|x2 + βx + γ|) +

2C −Bβ√
4γ − β2

arctan

(
2x + β√
4γ − β2

)

The case f (x) = (Bx + C)(x2 + βx + γ)−n, with n > 1, is more compli-
cated. We first simplify the denominator:∫

Bx + C

(x2 + βx + γ)n
dx =

∫
B′y + C ′

(y2 + 1)n
dy

where

λ =
√

γ − β2/4 , y =
x + β/2

λ
, B′ =

B

λ2n−2
, C ′ =

C −Bβ/2

λ2n−1
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Primitives for manageable pieces, finished 16

We compute∫
By + C

(y2 + 1)n
dy =

B

2

∫
2y

(y2 + 1)n
dy + C

∫
1

(y2 + 1)n
dy

= − B

2(n− 1)(y2 + 1)n−1
+ C

∫
1

(y2 + 1)n
dy .

For the remaining integral, we observe that∫
1

(y2 + 1)n
dy =

∫
y2 + 1

(y2 + 1)n
− y2

(y2 + 1)n
dy

=

∫
1

(y2 + 1)n−1
dy −

∫
y2

(y2 + 1)n
dy

Furthermore, using integration by parts on the second integral:∫
y2

(y2 + 1)n
dy = − y

2(n− 1)(y2 + 1)n−1
+

1

2(n− 1)

∫
1

(y2 + 1)n−1
dy
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Summary: Primitives for manageable pieces 17

The chief difficulty in computing∫
By + C

(y2 + 1)n
dy

is the determination of ∫
1

(y2 + 1)n
dy .

For n > 1, this is not achieved by a simple formula, but by repeating
the same simplification step n− 1 times:∫

1

(y2 + 1)1
dy = arctan(y)∫

1

(y2 + 1)n
dy =

y

2(n− 1)(y2 + 1)n−1
+

(
1 − 1

2(n− 1)

)∫
1

(y2 + 1)n−1
dy
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Summary: Integrating rational functions via partial fractions 18

General procedure for the integration of f (x) = P (x)
Q(x), k < n.

I Determine factorization of the denominator

Q(x) = C(x− ξ1)
k1 · · · (x− ξs)

ks(x2 + β1x + γ1)
l1 · · · (x2 + βtx + γt)

lt

I Determine the coefficients Ai,j, Bi,j, Ci,j in the partial fraction de-
composition of f . (Comparison of coefficients  solve linear
equations; see examples)

I Integrate each term in the partial fraction decomposition
separately:

B Use a change of coordinates to simplify the denominator
into (y2 + 1)n

B The term By(y2 + 1)−n can be integrated directly
B The term C(y2 + 1)−n can be integrated iteratively
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First example 19

Consider the function f (x) = 4x
x2 + 2x− 3

.

Factorizing the denominator: We compute the roots x1 = −3 and
x2 = 1. Hence x2 + 2x− 3 = (x− 1)(x + 3).

Partial fraction decomposition: We must determine A, B such that for
all x,

f (x) =
A

x− 1
+

B

x + 3
=

A(x + 3) + B(x− 1)

(x− 1)(x + 3)

Comparing enumerators, this leads to a system of linear equations

4x = x(A + B) + 3A−B ⇔ 4 = A + B , 0 = 3A−B.
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First example 20

This system of equations is solved by A = 1 and B = 3. Thus

f (x) =
1

x− 1
+

3

x + 3

Integrating the partial fractions yields

F (x) = ln(|x− 1|) + 3 ln(|x + 3|)
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Second example 21

Consider the function

f (x) =
4

x3 + x2 − x− 1
.

Factorizing the denominator: Since

x3 + x2 = x2(x + 1) , − x− 1 = −1(x + 1) ,

the denominator simplifies to

x3 + x2 − x− 1 = (x2 − 1)(x + 1) = (x + 1)(x + 1)(x− 1)

= (x + 1)2(x− 1)
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Second example 22

Partial fraction decomposition: We need A, B, C with

f (x) =
A

x + 1
+

B

(x + 1)2
+

C

x− 1

Multiplying by the denominator of f , we obtain the equation

4 = A(x + 1)(x− 1) + B(x− 1) + C(x + 1)2

= x2(A + C) + x(B + 2C) − A−B + C .

Comparing the coefficients for x2, x and 1, we obtain the equations

0 = A + C , 0 = B + 2C , 4 = −A−B + C.

This system has the solution

A = −1 , B = −2 , C = 1 .
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Second example 23

Therefore,
f (x) =

−1

x + 1
+

−2

(x + 1)2
+

1

x− 1

is the partial fractions decomposition of f .

Integrating the partial fractions yields

F (x) = − ln(|x + 1|) +
2

x + 1
+ ln(|x− 1|) .
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Third example 24

Consider the function

f (x) =
3x + 2

(x2 + 2x + 5)2

f itself is a partial fraction, hence we directly proceed to compute its
primitive.

Substitution simplifies the denominator:∫
3x + 2

(x2 + 2x + 5)2
dx =

∫
B′y + C ′

y2 + 1
dy

where

y =
x + 1

2
, λ =

√
5 − 22/4 = 2 , B′ =

3

4
, C ′ =

−1

8
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Third example 25

Using the formulas from slides 16 and 17, we compute∫
B′y + C ′

(y2 + 1)2
dy = − B′

2(y2 + 1)
+ C ′

∫
1

(y2 + 1)2
dy

= − B′

2(y2 + 1)
+ C ′

(
y

2(y2 + 1)
+

1

2

∫
1

(y2 + 1)1
dy

)
= − B′

2(y2 + 1)
+ C ′

(
y

2(y2 + 1)
+

1

2
arctan(y)

)
Substituting the expressions for y, B′, C ′ and simplifying yields∫

3x + 2

(x2 + 2x + 5)2
dx = − 13 + x

8(x2 + 2x + 5)
+

arctan
(

x+1
2

)
16
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Summary 26

I Simple looking integrands may be very hard (or impossible) to
integrate. There is no generally applicable integration method,
there are only techniques.

I The most important integration techniques:

B Integration by parts
B Substitution
B Partial fractions (for rational integrands)
B Educated guess and verification by differentiation


