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Week 12: Extensions of the Riemann
integral: Improper integrals,

two-dimensional integrals and volumes
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Improper integrals: Motivation 1

We again consider the flow rate f (t) of water running into a container.
We want to ensure that the container does not overflow at any point
in time.

We assume that we can reliably predict f (t) for any point t in the
future. Then we have to ensure that the volume V of the container
fulfills the inequality ∫ t

0

f (x)dx ≤ V ,

for all t > 0. Assuming that f ≥ 0, this boils down to the question
whether the container can hold all water that flows into it during the
unbounded time interval (0,∞), which could be reformulated as∫ ∞

0

f (x)dx ≤ V .
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Improper integrals: Definition 2

Definition.
Let f : (a, b) → R, with a, b ∈ R ∪ {±∞}. Assume that f is Riemann
integrable over all intervals [c, d] ⊂ (a, b), where −∞ < c < d < ∞.
Pick any c ∈ (a, b). If both

lim
t→a,t≥a

∫ c

t

f (x)dx and lim
t→b,t≤b

∫ t

c

f (x)dx

exist in R, then
∫ b

a f (x)dx is called convergent improper integral, and
we let ∫ b

a

f (x)dx = lim
t→a,t≥a

∫ c

t

f (x)dx + lim
t→b,t≤b

∫ t

c

f (x)dx .

The choice of c affects neither convergence nor the value of the im-
proper integral.
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Special case: One-sided improper integrals 3

Remarks. If f : (−∞, b) → R is Riemann integrable over all intervals
[a, b] for a < b, the improper integral simplifies to∫ b

a

f (x)dx = lim
t→−∞

∫ b

t

f (x)dx ,

provided the limit exists.
Likewise, if f : (a,∞) → R is Riemann integrable over all intervals
[a, b] for a < b, then ∫ ∞

a

f (x)dx = lim
t→∞

∫ t

a

f (x)dx ,

if the limit exists.
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Improper integration extends Riemann integration 4

The improper integral is an extension of Riemann integration in the
following sense:

I If f is Riemann integrable over [a, b], then the improper integral
exists and coincides with the Riemann integral.

I However, there are cases where the Riemann integral is not ap-
plicable, e.g.,

B The integration domain is unbounded; or
B the function is not Riemann-integrable over [a, b],

but the improper integral converges.

I Computation of improper integrals
∫ b

a f (x)dx proceeds in two steps:

B Compute primitive F of f on (a, b)

B Compute limt→a F (t), limt→b F (t)
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First example: Unbounded integration domain 5

We want to compute the improper integral∫ ∞

−∞
e−|x|dx .

For the computation of the improper integral, the point c = 0 is the
natural choice. Using et → 0 for t → −∞, we find

lim
t→−∞

∫ 0

t

e−|x|dx = lim
t→−∞

∫ 0

t

exdx = lim
t→−∞

ex|0t = 1

lim
t→∞

∫ t

0

e−|x|dx = lim
t→∞

∫ t

0

e−|x|dx = lim
t→∞

−e−x|t0 = 1 .

Hence ∫ ∞

−∞
e−|x|dx = 2 .



J

I

Second example: Integrating an unbounded function 6

For α ∈ R, we want to compute
∫ 1

0 xαdx. For α 6= −1, we obtain∫ 1

0

x−αdx = lim
t→0

∫ 1

t

xαdx = lim
t→0

1

α + 1
xα+1|1t = lim

t→0

1− tα+1

α + 1

=

{
1

α+1 α + 1 > 0

∞ α + 1 < 0

For α = −1, we obtain∫ 1

0

x−1dx = lim
t→0

ln(1)− ln(t) = −∞ .

Hence the improper integral converges precisely if α > −1.
Note: For α < 0, the integrand is unbounded on any interval (0, ε),
hence the Riemann integral does not converge. Hence the case
−1 < α < 0 is not covered by the Riemann integral.
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Properties of improper integrals 7

Theorem. Let f, g : (a, b) → R be given, and s ∈ R.

I If f, g are improperly integrable, then so is f + sg, with∫ b

a f (x) + sg(x)dx =
∫ b

a f (x)dx + s
∫ b

a g(x)dx.

I Assume that 0 ≤ f (x) ≤ g(x), for all x ∈ (a, b). Then∫ b

a

g(x)dx converges ⇒
∫ b

a

f (x)dx converges∫ b

a

f (x)dx diverges ⇒
∫ b

a

g(x)dx diverges

I If
∫ b

a |f (x)|dx converges, so does
∫ b

a f (x)dx, with∣∣∣∣∫ b

a

f (x)dx

∣∣∣∣ ≤ ∫ b

a

|f (x)|dx .
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Convergence of integrals vs. Convergence of series 8

Theorem. Let n0 ∈ N, and suppose that f : [n0,∞) → R is positive
and monotonically decreasing. Then∫ ∞

n0

f (x)dx < ∞⇒
∞∑

n=n0

f (n) < ∞ .
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Example: Estimating sums by integrals 9

We want to determine for which α ∈ R the sum
∑∞

n=1 nα is finite. Now∑
n=1 n−1 = ∞ (harmonic series) entails for all α > −1 that

∞∑
n=1

nα ≥
∞∑

n=1

n−1 = ∞ .

Hence it remains to consider the case α < −1. Since f (x) = xα is
decreasing on [1,∞), we can decide this by computing∫ ∞

1

f (x)dx = lim
t→∞

∫ t

1

xαdx = lim
t→∞

tα+1 − 1

α + 1
=

−1

α + 1
< ∞ .

This implies
∑∞

n=1 nα < ∞ for all α < −1.
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Higher-dimensional integrals and Volume: Motivation 10

We consider a rectangular pool with variable depth. I.e., the pool
is located in a rectangle [a, b] × [c, d], and its depth is a function f :

[a, b]× [c, d] → R. We call b−a the length and d− c the breadth of the
pool.

Our task is to compute the volume of the pool. Again, if the depth of
the pool is a constant K, this is easy:

Volume = length× breadth× depth = (b− a)(d− c)K .

For variable depths, we can hope to approximate the volume by a
procedure analogous to the one-dimensional case:

I Cut the domain [a, b]×[c, d] into small rectangles [xi−1, xi]×[yj−1, yj]

I Approximate f by constants on each rectangle

I Sum up the approximate volumes above the rectangles
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Two-dimensional partitions 11

Definition. Let f : [a, b] × [c, d] → R be a function. A partition P of
[a, b] × [c, d] is given by a pair (P1,P2) of partitions of [a, b] and [c, d],
respectively.

Observe: A partition P cuts the rectangle [a, b) × [c, d) into the rect-
angles

Rk,l = [xk−1, xk)× [yl−1, yl) , k = 1, . . . , n, l = 1, . . . ,m

We define

Mk,l = sup{f (x) : x ∈ Rk,l} , Mk,l = inf{f (x) : x ∈ Rk,l}
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Riemann-integrable functions in two dimensions 12

Definition. Let f : [a, b] × [c, d] → R, and P a partition of [a, b] × [c, d].
We define

S(P) =
∑
k,l

Mk,l(xk − xk−1)(yl − yl−1)

S(P) =
∑
k,l

Mk,l(xk − xk−1)(yl − yl−1)

Definition. The function f : [a, b] × [c, d] → R is called Riemann inte-
grable if for all ε > 0 there exists a partition P such that

S(P)− S(P) < ε .
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Definition of the Riemann integral in two dimensions 13

Definition. Let Let f : [a, b] × [c, d] → R be Riemann-integrable. Let
partitions Pn = (Pn

1 ,Pn
2 ) (for n ∈ N)) be given such that

δn = maximal diameter of the rectangles in Pn

goes to zero. Then there exists a unique number I(f ) such that

I(f ) = lim
n→∞

S(Pn) = S(Pn) .

I(f ) is called the Riemann integral of f , and denoted as

I(f ) =

∫∫
[a,b]×[c,d]

f (x, y)d(x, y) .
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Properties of the Riemann integral 14

Let f, g : [a, b]× [c, d] → R be Riemann integrable, and s ∈ R
I f+sg is Riemann integrable, with

∫∫
[a,b]×[c,d]

f (x, y)+sg(x, y)d(x, y) =∫∫
[a,b]×[c,d]

f (x, y)d(x, y) + s
∫∫

[a,b]×[c,d]

g(x, y)d(x, y).

I If f (x, y) ≤ g(x, y), for all (x, y) ∈ (a, b)× (c, d). Then∫∫
[a,b]×[c,d]

f (x, y)d(x, y) ≤
∫∫

[a,b]×[c,d]

g(x, y)d(x, y)

I |f | is also Riemann integrable, with∣∣∣∣∣∣∣
∫∫

[a,b]×[c,d]

f (x, y)d(x, y)

∣∣∣∣∣∣∣ ≤
∫∫

[a,b]×[c,d]

|f (x, y)|d(x, y)
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Computing two-dimensional integrals 15

Theorem. Every continuous f : [a, b] × [c, d] → R is integrable, and
the integral can be computed in either of the following ways:
I The function g1 : [a, b] 7→ R, g1(x) =

∫ d

c f (x, y)dy is continuous, and∫∫
[a,b]×[c,d]

f (x, y)d(x, y) =

∫ b

a

g1(x)dx

I The function g2 : [c, d] 7→ R, g2(y) =
∫ b

a f (x, y)dx is continuous, and∫∫
[a,b]×[c,d]

f (x, y)d(x, y) =

∫ b

a

g2(y)dx

Hence∫∫
[a,b]×[c,d]

f (x, y)d(x, y) =

∫ d

c

∫ b

a

f (x, y)dxdy =

∫ b

a

∫ d

c

f (x, y)dydx .
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First example: A pool with linearly increasing depth 16

We have a pool of length 50 and breadth 25. We assume that the
pool is 80 centimeters deep at the shallow end, and over the length
of 50 meters the depth increases linearly up to 3 meters. In other
words, the depth function f : [0, 50]× [0, 25] → R is given by

f (x, y) = 0.8 +
2.2

50
x .

Then the volume of the pool is computed as∫ 50

0

∫ 25

0

0.8+
2.2

50
xdydx =

∫ 50

0

25·(0.8+
2.2

50
x)dx =

(
20x +

1.1

2
x2

)∣∣∣∣50

0

= 2375 ,

i.e., 2375 cubic metres of water are needed to fill the pool.
Alternatively, we could have computed∫ 25

0

∫ 50

0

0.8+
2.2

50
xdxdy =

∫ 25

0

(
0.8x +

1.1

50
x2

)∣∣∣∣50

0

dy =

∫ 25

0

95dy = 2375
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Second example 17

We want to compute the integral∫∫
[0,1]×[0,1]

exyd(x, y)

∫ 1

0

∫ 1

0

exydxdy =

∫ 1

0

(
exy

y

)∣∣∣∣1
0

dy =

∫ 1

0

ey − 1

y
dy .

Using the substitution s = ey, ds = dy
y , we continue∫ 1

0

ey − 1

y
dy =

∫ e1

e0
s− 1ds =

(
s2

2
− s

)∣∣∣∣e
1

=
e2

2
− e +

1

2
≈ 1.4726
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More general integration domains 18

More general setting: Let G ⊂ R2 denote a bounded set, f : G → R.
How should we define

∫∫
G

f (x, y)d(x, y)?

Answer: Since G is bounded, G ⊂ [a, b] × [c, d], for suitable −∞ <

a < b < ∞ and −∞ < c < d < ∞. We extend f to a function
g : [a, b]× [c, d] → R by letting

g(x, y) =

{
f (x, y) (x, y) ∈ G

0 (x, y) ∈ [a, b]× [c, d] \G

We then declare f integrable iff g is integrable, and define∫∫
G

f (x, y)d(x, y) =

∫∫
[a,b]×[c,d]

g(x, y)d(x, y)

This works at least for reasonable G and f .
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Projectable sets 19

Definition. Let G ⊂ R2 be a bounded set. Then G is called

I y-projectable if there exist continuous functions y, y : [a, b] → R
such that

G = {(x, y) : y(x) ≤ y ≤ y(x) , x ∈ [a, b]} .

I x-projectable if there exist continuous functions x, x : [c, d] → R
such that

G = {(x, y) : x(y) ≤ x ≤ x(y) , y ∈ [c, d]}

I projectable if it is either x- or y-projectable.
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Illustration: Projectable sets 20

A projectable set is described by a pair of curves as (lower and upper,
or left and right) boundaries.
Left to right: y-projectable, x-projectable, both x- and y-projectable
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Integration over projectable sets 21

Theorem. Let f : G → R be continuous, where G ⊂ R2 is a bounded
projectable set. Then f is integrable, and

I If G is y-projectable, i.e., G = {(x, y) : y(x) ≤ y ≤ y(x) , x ∈ [a, b]}
then ∫∫

G

f (x, y)d(x, y) =

∫ b

a

∫ y(x)

y(x)

f (x, y)dydx

I If G is x-projectable, i.e., G = {(x, y) : x(y) ≤ x ≤ x(y) , y ∈ [c, d]},
then ∫∫

G

f (x, y)d(x, y) =

∫ d

c

∫ x(y)

x(y)

f (x, y)dxdy .

If G is both x and y-projectable, we have in particular that∫ b

a

∫ y(x)

y(x)

f (x, y)dydx =

∫ d

c

∫ x(y)

x(y)

f (x, y)dxdy
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Example: Integration over a triangle 22

Suppose that the integration domain is given by the triangle with cor-
ners (0, 0), (1, 0), (1, 1).
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Two alternatives for integration 23

Observation: The domain is both x- and y-projectable, with

y(x) = 0 , y(x) = x , x(y) = y , x(y) = 1

Hence∫∫
G

f (x, y)d(x, y) =

∫ 1

0

(∫ x

0

f (x, y)dy

)
dx =

∫ 1

0

(∫ 1

y

f (x, y)dx

)
dy
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Summary: Integration over projectable domain 24

Suppose that f : G → R is continuous, and G is y-projectable. Then∫ ∫
G

f (x, y)d(x, y)

is determined by the following steps:

I Determine lower and upper bound for outer integration variable x,
i.e., a ≤ x ≤ b

I Determine lower and upper bound for inner integration variable y,
as function of x. I.e., y(x) ≤ y ≤ y(x).

I For each x ∈ [a, b], determine a primitive Fx of the function fx :

y 7→ f (x, y). In this step, x is just a constant.

I Compute
∫ b

a Fx(y(x))− Fx(y(x))dx

For x-projectable domains, exchange the roles of x- and y-coordinates.
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Further extensions of the Riemann integral 25

Generalizations are possible and useful for

I Domains that can be pieced together by projectable domains

I Higher dimensions: Given a suitable f : [a, b] × [c, d] × [r, t] → R,
we approximate f by constants on subcubes [xi, xi+1)× [yl, yl+1)×
[zj, zj+1], etc.
All properties we observed for the two-dimensional integrals gen-
eralize to higher-dimensional integrals in a straightforward way.
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Summary 26

I Improper integration requires

B Computing the primitive
B Taking limits towards integration boundaries

I Integration over rectangles requires

B Computing primitives with respect to one of the integration vari-
ables

B Evaluating at the boundaries, and integrating the result over
the remaining variable

I Integration over projectable domains requires

B Computing the integration boundaries for one variable as func-
tion of the other

B Evaluating the inner integral at the boundaries
B Integrating the result over the remaining variable


