Calculus and Linear Algebra for Biomedical Engineering

Week 13: Review of selected topics

H. Führ, Lehrstuhl A für Mathematik, RWTH Aachen, WS 07

- 1. Sequences, series and limits
- 2. Checking continuity and differentiability

1

3. Taylor polynomials

Relevant questions: Given a sequence $(a_n)_{n \in \mathbb{N}}$,

- **Does** $\lim_{n\to\infty} a_n$ exist?
- ▶ Does $\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} \sum_{k=1}^{n} a_k$ exist?
- If either of the above limit exist, what is its value?

Tools:

- Convergence criteria
- Breaking down a series/sequence into simpler ones
- Keeping a list of basic sequences for which the answers are known

- ► Necessary criterion: Boundedness. If (a_n)_{n∈N} converges, then there exist A, B ∈ R with A < a_n < B, for all n ∈ N.</p>
- Sufficient criterion: Boundedness and monotonicity.
- Necessary and sufficient criterion: Cauchy criterion.
 (a_n)_{n∈ℕ} converges iff for every ε > 0 there exists N(ε) such that |a_n − a_k| < ε for all n, k > N(ε).

Known limits

▶ If s > 0, then

$$\lim_{n \to \infty} n^{\alpha} s^{n} = \begin{cases} \infty & s > 1, \text{ or } s = 1, \alpha > 0\\ 1 & s = 1, \alpha = 0\\ 0 & s < 1, \text{ or } s = 1, \alpha < 0 \end{cases}$$

► If

$$a_n = \frac{s_k n^k + s_{k-1} n^{k-1} + \ldots + s_0}{t_m n^m + t_{m-1} n^{m-1} + \ldots + t_0} ,$$

with $s_k, t_m \neq 0$ and $m, k \in \mathbb{N}_0$, then

$$\lim_{n \to \infty} a_n = \begin{cases} \pm \infty & k > m \\ \frac{s_k}{t_k} & k = m \\ 0 & k < m \end{cases}$$

$$im_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e.$$

Suppose we know that

$$\lim_{n \to \infty} a_n = a , \quad \lim_{n \to \infty} b_n = b$$

then, for all $r, s \in \mathbb{R}$

$$\lim_{n \to \infty} ra_n + sb_n = ra + sb , \lim_{n \to \infty} a_n b_n = ab , \quad \lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b} , \qquad (1)$$

where the last limit is defined if $b \neq 0$. Furthermore, if *f* is a function continuous at *a*, then

$$\lim_{n \to \infty} f(a_n) = f(a) \; .$$

We want to compute the limit

$$\lim_{n \to \infty} \frac{n^2 + 1}{\sqrt{n^4 + 1}}$$

We first rewrite the expression as

$$\frac{n^2 + 1}{\sqrt{n^4 + 1}} = \sqrt{\frac{(n^2 + 1)^2}{n^4 + 1}} = \sqrt{\frac{n^4 + 2n^2 + 1}{n^4 + 1}}$$

The expression in the square root converges to 1 (see slide 4). The square root function is continuous at 1, therefore

$$\lim_{n \to \infty} \frac{n^2 + 1}{\sqrt{n^4 + 1}} = \lim_{n \to \infty} \sqrt{\frac{n^4 + 2n^2 + 1}{n^4 + 1}} = \sqrt{1} = 1 \; .$$

A necessary condition for the convergence of the series $\sum_{n=1}^{\infty} a_n$ is that

$$\lim_{n \to \infty} a_n = 0 \; .$$

Sufficient conditions are

- (a) Majorant criterion: Let $\sum_{n=0}^{\infty} z_n$ be an absolutely convergent series such that $|x_n| < |z_n|$. Then $(x_n)_{n \in \mathbb{R}}$ converges absolutely.
- (b) Quotient criterion: If there exists a constant c with 0 < c < 1, such that for all $n \in \mathbb{N}$, with n > M, $\left|\frac{x_{n+1}}{x_n}\right| < c$, then $\sum_{n=0}^{\infty} x_n$ converges absolutely.
- (c) Leibniz criterion: Suppose that the sequence $(x_n)_{n \in \mathbb{N}}$ converges to zero, and fulfills $|x_{n+1}| < |x_n|$ as well as $x_{n+1} \cdot x_n \leq 0$. Then $\sum_{n=0}^{\infty} x_n$ converges.

Known series

▶ Harmonic series: $\sum_{n=1}^{\infty} n^{-1} = \infty$. Thus, for $\alpha < -1$, $\sum_{n=1} n^{-\alpha} = \infty$.

For
$$\alpha > 1$$
, $\sum_{n=1}^{\infty} n^{-\alpha} < \infty$.

▶ Geometric series: If |q| < 1, then

$$\sum_{n=0}^{\infty} q^n = \frac{1}{1-q} \; .$$

Exponential series: For fixed $x \in \mathbb{R}$,

$$\sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x$$

Suppose we know that

$$\sum_{n=1}^{\infty} a_n = a \ , \ \sum_{n=1}^{\infty} b_n = b$$

with $a, b \in \mathbb{R}$. Then, for all $r, s \in \mathbb{R}$

$$\sum_{n=1}^{\infty} ra_n + sb_n = ra + sb .$$
⁽²⁾

In particular, $\sum_{n=1}^{\infty} ra_n + sb_n$ exists.

Example: WS 5, Ex. 7 (k)

We want to determine whether $\sum_{n=1}^{\infty} a_n$ converges, for

$$a_n = \left(\frac{n}{n+1}\right)^n$$

We observe that

$$\left(\frac{n}{n+1}\right)^{n} = \left(1 - \frac{1}{n+1}\right)^{n} = \frac{\left(1 - \frac{1}{n+1}\right)^{n+1}}{1 - \frac{1}{n+1}}.$$

Here the denominator converges to 1, and the enumerator converges to 1/e. Hence $a_n \rightarrow 1/e$, in particular $a_n \not\rightarrow 0$, and the series diverges.

We want to determine whether $\sum_{n=1}^{\infty} a_n$ converges, for

$$a_n = \frac{k^{2n}}{n!}$$

Here $k \in \mathbb{N}$ is a constant. We consider the quotient

$$\left. \frac{a_{n+1}}{a_n} \right| = \frac{k^{2n+2}n!}{(n+1)!k^{2n}} = \frac{k^2}{n+1} \; .$$

For all $n > 2k^2$, we find that

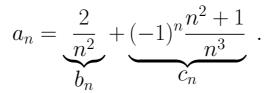
$$\left|\frac{a_{n+1}}{a_n}\right| < \frac{1}{2} \; .$$

Then the quotient criterion implies that $\sum_{n=1}^{\infty} a_n$ converges. In fact,

$$\sum_{n=1}^{\infty} \frac{k^{2n}}{n!} = -1 + \sum_{n=0}^{\infty} \frac{\left(k^2\right)^n}{n!} = e^{k^2} - 1 \; .$$

Example: WS 5, Ex. 7 (m)

We want to determine whether $\sum_{n=1}^{\infty} a_n$ converges, for



We read off from the above list that $\sum_{n=1}^{\infty} n^{-2}$ converges, and thus

$$\sum_{n=1}^{\infty}b_n<\infty$$
 .

For $\sum_{n=1}^{\infty} c_n$ we observe that the sign of two consecutive series elements changes. Moreover, $c_n \to 0$, hence it remains to check that $(|c_n|)_{n \in \mathbb{N}}$ is eventually strictly decreasing (Leibniz criterion). But

$$|c_n| = \frac{n^2 + 1}{n^3} = \frac{1}{n} + \frac{1}{n^3},$$

which is strictly decreasing. Hence $\sum_{n=1}^{\infty} c_n$ converges.

Recall from Lecture 7:

- Every differentiable function is continuous.
- "Most" functions possessing an explicit expression are differentiable
- Exceptions: Piecewise defined functions, points outside the domain of definition.

Problem: For a function f, given as an expression using known functions, determine the domain of continuity (differentiability)

- ▶ Determine the set *S* of $x \in \mathbb{R}$ for which f(x) is not well-defined (for differentiability, consider the value |0| as not well-defined).
- ▶ On $\mathbb{R} \setminus S$, *f* is continuous (differentiable)
- For $x \in S$, check continuity (differentiability) by considering $\lim_{y\to x} f(y)$ ($\lim_{y\to x} f'(y)$).

Known function classes

- For α ∈ ℝ, the function f(x) = x^α, is differentiable on (0,∞) with derivative f'(x) = αx^{α-1}. This includes the constant function f(x) = 1 = x⁰, with derivative f'(x) = 0.
 For n ∈ ℕ, the function f(x) = xⁿ is differentiable on ℝ, with derivative f'(x) = nxⁿ⁻¹. The quotient rule entails for g(x) = x⁻ⁿ, that f'(x) = -nx⁻ⁿ⁺¹.
- ▶ As a consequence, polynomials $f : \mathbb{R} \to \mathbb{R}$ are differentiable.
- ▶ f(x) = |x| is continuous on \mathbb{R} , differentiable on $\mathbb{R} \setminus \{0\}$.
- ► Trigonometric functions: E.g., sin, cos are differentiable, with sin' = cos, cos' = sin.
- The exponential function is differentiable, with exp' = exp.
- Any function that is obtained from the above list by composition and/or algebraic operations, is again differentiable wherever it is well-defined.

Problem: Given

$$f(x) = \frac{x^2|x+1|}{|x-2|} ,$$

decide where f is continuous, where it is differentiable, compute f'.

Note: *f* is is made up of known functions. f(x) is not defined for x = 2. For x = -1, the enumerator may not be differentiable.

 \Rightarrow *f* is continuous on $\mathbb{R} \setminus \{2\}$, and differentiable on $\mathbb{R} \setminus \{-1, 2\}$.

For $x \to 2$, we find $f(x) \to \infty$. In particular, f is not continuous at 2.

For the computation of f', we write

$$f(x) = \begin{cases} \frac{x^2(x+1)}{x-2} & x < -1\\ \frac{-x^2(x+1)}{x-2} & -1 < x < 2\\ \frac{x^2(x+1)}{x-2} & 2 < x \end{cases}$$

Each of the pieces is now differentiated separately, which yields

$$f'(x) = \begin{cases} \frac{(3x^2 + 2x)(x - 2) - x^2(x + 1)}{(x - 2)^2} & x < -1 \text{ or } x > 2\\ -\frac{(3x^2 + 2x)(x - 2) - x^2(x + 1)}{(x - 2)^2} & -1 < x < 2 \end{cases}$$

As $x \to -1$, x < -1, we obtain $f'(x) \to -1$, and $f'(x) \to 1$, for $x \to -1, x > 1$. Thus f is not differentiable at -1.

Problem: Given n + 1 times differentiable $f : (a, b) \rightarrow \mathbb{R}$ and x_0 , compute the Taylor polynomial

$$T_{n,x_0}(y) = f(x_0) + f'(x_0)(y - x_0) + \frac{f''(x_0)}{2}(y - x_0)^2 + \ldots + \frac{f^{(n)}(x_0)}{n!}(y - x_0)^n$$

and estimate the residue.

$$R_{n,x_0}(y) = f(y) - T_{n,x_0}(y)$$

Necessary steps:

- ► Compute $f'(x_0), f''(x_0), \ldots, f^{(n+1)}(x_0)$, write down T_{n,x_0} .
- For an estimate of R_{n,x_0} , find a constant B > 0 such that

$$\forall y \in (a,b) : |f^{(n+1)}(y)| \le M$$

Then

$$\forall y \in (a,b) : |R_{n,x_0}(y)| \le \frac{M(b-a)^{n+1}}{(n+1)!}$$

Problem: Compute the Taylor polynomial T_{2,x_0} , for $x_0 = \pi/2$,

$$f(x) = \cos(\frac{\pi}{4}\sin(x)) \; .$$

and estimate the remainder $R_{2,x_0}(y)$ for $|y - x_0| < 0.1$. We compute the derivatives

$$f'(x) = -\sin(\frac{\pi}{4}\sin(x))\frac{\pi}{4}\cos(x)$$

$$f''(x) = -\cos(\frac{\pi}{4}\sin(x))\left(\frac{\pi}{4}\right)^2\cos^2(x) + \sin(\frac{\pi}{4}\sin(x))\frac{\pi}{4}\sin(x)$$

Using $\sin(\pi/2) = 1$, $\cos(\pi/2) = 1$, $\sin(\pi/4) = \cos(\pi/4) = \frac{\sqrt{2}}{2}$, we find

$$f(x_0) = \sqrt{2}/2, \ f'(x_0) = 0, \ f''(x_0) = \frac{\sqrt{2}\pi}{8}$$

$$T_{2,x_0} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}\pi}{16}(x - \frac{\pi}{2})^2$$

An estimate of the error term requires an upper bound for |f'''(x)|:

$$f'''(x) = \sin(\frac{\pi}{4}\sin(x))\left(\left(\frac{\pi}{4}\right)^3\cos^3(x) + \frac{\pi}{4}\cos(x)\right) + 3\left(\frac{\pi}{4}\right)^2\cos(\frac{\pi}{4}\sin(x))\sin(x)\cos(x)$$

for all x with $|x - \frac{\pi}{2}| < 0.1$. We use a rather crude estimate, namely $|\sin(x)| < 1$, $|\cos(x)| < 1$, and obtain

$$|f'''(x)| \le \left(\frac{\pi}{4}\right)^3 + \left(\frac{\pi}{4}\right) + 3\left(\frac{\pi}{4}\right)^2 \approx 3.1204221$$

Accordingly, if $|x - \frac{\pi}{2}| < 0.1$, then

$$|R_{2,x_0}(x)| \le \frac{3.1204221}{3!} \left| x - \frac{\pi}{2} \right|^3 < 0.00052007$$