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Week 13: Review of selected topics

H. Führ, Lehrstuhl A für Mathematik, RWTH Aachen, WS 07
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Topic overview 1

1. Sequences, series and limits

2. Checking continuity and differentiability

3. Taylor polynomials
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Sequences, series and limits 2

Relevant questions: Given a sequence (an)n∈N,

I Does limn→∞ an exist?

I Does
∑∞

n=1 an = limn→∞
∑n

k=1 ak exist?

I If either of the above limit exist, what is its value?

Tools:

I Convergence criteria

I Breaking down a series/sequence into simpler ones

I Keeping a list of basic sequences for which the answers are known
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Criteria for sequence convergence 3

I Necessary criterion: Boundedness.
If (an)n∈N converges, then there exist A, B ∈ R with A < an < B,
for all n ∈ N.

I Sufficient criterion: Boundedness and monotonicity.

I Necessary and sufficient criterion: Cauchy criterion.
(an)n∈N converges iff for every ε > 0 there exists N(ε) such that
|an − ak| < ε for all n, k > N(ε).
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Known limits 4

I If s > 0, then

lim
n→∞

nαsn =


∞ s > 1, or s = 1, α > 0

1 s = 1, α = 0

0 s < 1, or s = 1, α < 0

I If

an =
skn

k + sk−1n
k−1 + . . . + s0

tmnm + tm−1nm−1 + . . . + t0
,

with sk, tm 6= 0 and m, k ∈ N0, then

lim
n→∞

an =


±∞ k > m

sk
tk

k = m

0 k < m

I limn→∞
(
1 + 1

n

)n
= e.
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Computing limits from known limits 5

Suppose we know that

lim
n→∞

an = a , lim
n→∞

bn = b

then, for all r, s ∈ R

lim
n→∞

ran + sbn = ra + sb , lim
n→∞

anbn = ab , lim
n→∞

an

bn
=

a

b
, (1)

where the last limit is defined if b 6= 0.
Furthermore, if f is a function continuous at a, then

lim
n→∞

f (an) = f (a) .
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Example 6

We want to compute the limit

lim
n→∞

n2 + 1√
n4 + 1

We first rewrite the expression as

n2 + 1√
n4 + 1

=

√
(n2 + 1)2

n4 + 1
=

√
n4 + 2n2 + 1

n4 + 1

The expression in the square root converges to 1 (see slide 4). The
square root function is continuous at 1, therefore

lim
n→∞

n2 + 1√
n4 + 1

= lim
n→∞

√
n4 + 2n2 + 1

n4 + 1
=
√

1 = 1 .
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Criteria for series convergence 7

A necessary condition for the convergence of the series
∑∞

n=1 an is
that

lim
n→∞

an = 0 .

Sufficient conditions are

(a) Majorant criterion: Let
∑∞

n=0 zn be an absolutely convergent se-
ries such that |xn| < |zn|. Then (xn)n∈R converges absolutely.

(b) Quotient criterion: If there exists a constant c with 0 < c < 1, such
that for all n ∈ N, with n > M ,

∣∣∣xn+1
xn

∣∣∣ < c, then
∑∞

n=0 xn converges
absolutely.

(c) Leibniz criterion: Suppose that the sequence (xn)n∈N converges
to zero, and fulfills |xn+1| < |xn| as well as xn+1 · xn ≤ 0. Then∑∞

n=0 xn converges.
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Known series 8

I Harmonic series:
∑∞

n=1 n−1 = ∞. Thus, for α < −1,
∑

n=1 n−α =

∞.

I For α > 1,
∑∞

n=1 n−α < ∞.

I Geometric series: If |q| < 1, then
∞∑

n=0

qn =
1

1− q
.

I Exponential series: For fixed x ∈ R,
∞∑

k=0

xk

k!
= ex .
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Sums of sequences 9

Suppose we know that
∞∑

n=1

an = a ,

∞∑
n=1

bn = b

with a, b ∈ R. Then, for all r, s ∈ R
∞∑

n=1

ran + sbn = ra + sb . (2)

In particular,
∑∞

n=1 ran + sbn exists.
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Example: WS 5, Ex. 7 (k) 10

We want to determine whether
∑∞

n=1 an converges, for

an =

(
n

n + 1

)n

We observe that (
n

n + 1

)n

=

(
1− 1

n + 1

)n

=

(
1− 1

n+1

)n+1

1− 1
n+1

.

Here the denominator converges to 1, and the enumerator converges
to 1/e. Hence an → 1/e, in particular an 6→ 0, and the series diverges.
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Example: WS 5, Ex. 7 (j) 11

We want to determine whether
∑∞

n=1 an converges, for

an =
k2n

n!
.

Here k ∈ N is a constant. We consider the quotient∣∣∣∣an+1

an

∣∣∣∣ =
k2n+2n!

(n + 1)!k2n
=

k2

n + 1
.

For all n > 2k2, we find that ∣∣∣∣an+1

an

∣∣∣∣ <
1

2
.

Then the quotient criterion implies that
∑∞

n=1 an converges. In fact,∑
n=1

k2n

n!
= −1 +

∞∑
n=0

(
k2

)n

n!
= ek2 − 1 .
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Example: WS 5, Ex. 7 (m) 12

We want to determine whether
∑∞

n=1 an converges, for

an =
2

n2︸︷︷︸
bn

+ (−1)n
n2 + 1

n3︸ ︷︷ ︸
cn

.

We read off from the above list that
∑∞

n=1 n−2 converges, and thus
∞∑

n=1

bn < ∞ .

For
∑∞

n=1 cn we observe that the sign of two consecutive series ele-
ments changes. Moreover, cn → 0, hence it remains to check that
(|cn|)n∈N is eventually strictly decreasing (Leibniz criterion). But

|cn| =
n2 + 1

n3
=

1

n
+

1

n3
,

which is strictly decreasing. Hence
∑∞

n=1 cn converges.
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Checking continuity and/or differentiability 13

Recall from Lecture 7:

I Every differentiable function is continuous.

I “Most” functions possessing an explicit expression are differen-
tiable

I Exceptions: Piecewise defined functions, points outside the do-
main of definition.

Problem: For a function f , given as an expression using known func-
tions, determine the domain of continuity (differentiability)

I Determine the set S of x ∈ R for which f (x) is not well-defined
(for differentiability, consider the value |0| as not well-defined).

I On R \ S, f is continuous (differentiable)

I For x ∈ S, check continuity (differentiability) by considering limy→x f (y)

(limy→x f ′(y)).
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Known function classes 14

I For α ∈ R, the function f (x) = xα, is differentiable on (0,∞)

with derivative f ′(x) = αxα−1. This includes the constant func-
tion f (x) = 1 = x0, with derivative f ′(x) = 0.
For n ∈ N, the function f (x) = xn is differentiable on R, with
derivative f ′(x) = nxn−1. The quotient rule entails for g(x) = x−n,
that f ′(x) = −nx−n+1.

I As a consequence, polynomials f : R → R are differentiable.

I f (x) = |x| is continuous on R, differentiable on R \ {0}.
I Trigonometric functions: E.g., sin, cos are differentiable, with sin′ =

cos, cos′ = − sin.

I The exponential function is differentiable, with exp′ = exp.

I Any function that is obtained from the above list by composition
and/or algebraic operations, is again differentiable wherever it is
well-defined.
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Example: WS 8, Ex. 2 (e) 15

Problem: Given

f (x) =
x2|x + 1|
|x− 2|

,

decide where f is continuous, where it is differentiable, compute f ′.

Note: f is is made up of known functions.
f (x) is not defined for x = 2.
For x = −1, the enumerator may not be differentiable.

⇒ f is continuous on R \ {2}, and differentiable on R \ {−1, 2}.

For x → 2, we find f (x) →∞. In particular, f is not continuous at 2.
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Computing derivatives 16

For the computation of f ′, we write

f (x) =


x2(x+1)

x−2 x < −1
−x2(x+1)

x−2 −1 < x < 2
x2(x+1)

x−2 2 < x

Each of the pieces is now differentiated separately, which yields

f ′(x) =


(3x2 + 2x)(x− 2)− x2(x + 1)

(x− 2)2
x < −1 or x > 2

−(3x2 + 2x)(x− 2)− x2(x + 1)
(x− 2)2

−1 < x < 2

As x → −1, x < −1, we obtain f ′(x) → −1, and f ′(x) → 1, for
x → −1, x > 1. Thus f is not differentiable at −1.
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Taylor polynomial and residue 17

Problem: Given n + 1 times differentiable f : (a, b) → R and x0,
compute the Taylor polynomial

Tn,x0(y) = f (x0)+f ′(x0)(y−x0)+
f ′′(x0)

2
(y−x0)

2+ . . .+
f (n)(x0)

n!
(y−x0)

n

and estimate the residue.

Rn,x0(y) = f (y)− Tn,x0(y)

Necessary steps:
I Compute f ′(x0), f

′′(x0), . . . , f
(n+1)(x0), write down Tn,x0.

I For an estimate of Rn,x0, find a constant B > 0 such that

∀y ∈ (a, b) : |f (n+1)(y)| ≤ M

Then

∀y ∈ (a, b) : |Rn,x0(y)| ≤ M(b− a)n+1

(n + 1)!
.
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Example: WS 8, Ex. 6 (b) 18

Problem: Compute the Taylor polynomial T2,x0, for x0 = π/2,

f (x) = cos(
π

4
sin(x)) .

and estimate the remainder R2,x0(y) for |y − x0| < 0.1.
We compute the derivatives

f ′(x) = − sin(
π

4
sin(x))

π

4
cos(x)

f ′′(x) = − cos(
π

4
sin(x))

(π

4

)2

cos2(x) + sin(
π

4
sin(x))

π

4
sin(x)

Using sin(π/2) = 1, cos(π/2) = 1, sin(π/4) = cos(π/4) =
√

2
2 , we find

f (x0) =
√

2/2 , f ′(x0) = 0 , f ′′(x0) =

√
2π

8

T2,x0 =

√
2

2
+

√
2π

16
(x− π

2
)2
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Example: WS 8, Ex. 6 (b) 19

An estimate of the error term requires an upper bound for |f ′′′(x)|:

f ′′′(x) = sin(
π

4
sin(x))

((π

4

)3

cos3(x) +
π

4
cos(x)

)
+ 3

(π

4

)2

cos(
π

4
sin(x)) sin(x) cos(x)

for all x with |x − π
2 | < 0.1. We use a rather crude estimate, namely

| sin(x)| < 1, | cos(x)| < 1, and obtain

|f ′′′(x)| ≤
(π

4

)3

+
(π

4

)
+ 3

(π

4

)2

≈ 3.1204221

Accordingly, if |x− π
2 | < 0.1, then

|R2,x0(x)| ≤ 3.1204221

3!

∣∣∣x− π

2

∣∣∣3 < 0.00052007


