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Topic overview

1. Sequences, series and limits
2. Checking continuity and differentiability
3. Taylor polynomials



Sequences, series and limits

Relevant questions: Given a sequence (ay,)nen;,
» Does lim,,_, a,, exist?
» Does >~ a, = lim, o0 > ai €Xist?

» If either of the above limit exist, what is its value?

Tools:
» Convergence criteria
» Breaking down a series/sequence into simpler ones

» Keeping a list of basic sequences for which the answers are known



Criteria for sequence convergence

» Necessary criterion: Boundedness.
If (a,)nen CONverges, then there exist A, B € R with A < a,, < B,
foralln € N.

» Sufficient criterion: Boundedness and monotonicity.

» Necessary and sufficient criterion: Cauchy criterion.
(a,)nen converges iff for every e > 0 there exists N(¢) such that
la, — ax| < e forall n,k > N(e).



Known limits

» If s > 0, then

oo s>1,0ors=1a>0
lim n%s" = 1 s=1,a=0
T 0 s<l,ors=1,a<0

> If
sknk + sk_mk_l + ...+ Sy

tn™ 4t 4ty
with Sk bm 7é 0 and m, k € Ny, then

An

+o0o0 k>m
lim a,, = i—’; k=m
0 k<m

» lim,, . (1 + %)n = e.



Computing limits from known limits

Suppose we know that

lim a, =a, lim b, =0
n—oo n—oo

then, forall r,s € R

. , oa, a
lim ra, + sb, =ra+ sb, lim a,b, =ab, lim — = —

, (D

where the last limit is defined if b # 0.
Furthermore, if f is a function continuous at a, then

lim f(a,) = f(a) .

n—oo



Example 6

We want to compute the limit

. o nt41
lim —————
n—oo y/nt 41

We first rewrite the expression as

n*+1 /(n2+1)2\/n4+2n2+1
oY ntf4+1 nt+1

The expression in the square root converges to 1 (see slide 4). The
square root function is continuous at 1, therefore




Criteria for series convergence

A necessary condition for the convergence of the series >, a,, is
that

lim a, =0 .
n—oo

Sufficient conditions are

(a) Majorant criterion: Let >, z, be an absolutely convergent se-
ries such that |z, | < |z,|. Then (x,),cr cOnverges absolutely.

(b) Quotient criterion: If there exists a constant ¢ with 0 < ¢ < 1, such
that for all n € N, with n > M, < ¢, then >~  x, converges
absolutely.

Tn41
In

(c) Leibniz criterion: Suppose that the sequence (x,),cn CONverges
to zero, and fulfills |z, 1| < |x,| as well as x,,1 -z, < 0. Then
> o Ty COnverges.



Known series 8

» Harmonic series: > n~! = co. Thus, fora < —1, > n® =
Q.

» Fora>1,>"" n*< oo.

» Geometric series: If |¢| < 1, then

00
>t
n=0

» Exponential series: For fixed = € R,

OOZU
L



Sums of sequences

Suppose we know that

ian:a, ibnzb
n=1 n=1

with a,b € R. Then, forall r,s € R

0

Zran+sbn:ra—|—sb.

n=1

In particular, >, ra, + sb, exists.

2)



Example: WS 5, Ex. 7 (k) 0

We want to determine whether >~ | a,, converges, for

We observe that

Here the denominator converges to 1, and the enumerator converges
to 1/e. Hence a,, — 1/e, in particular a,, /4 0, and the series diverges.



Example: WS 5, Ex. 7 (j) "

We want to determine whether >~ | a,, converges, for

k2n
ap = —— .
n!
Here k € N is a constant. We consider the quotient
1| f2nt+2p] B k2
an (n+1Dk2 n+1°

For all n > 2k2, we find that
1

5 .
Then the quotient criterion implies that Zo" a, converges. In fact,

an
___1_|_Z n' — 1

n=1 n=0

ap+41
an




Example: WS 5, Ex. 7 (m) 2

We want to determine whether > | a,, converges, for

2 241
an= — (-
T T
v \ ~~ _J

b, Cn

We read off from the above list that >~°° , n= converges, and thus

(0. 9]
an< o0 .
n=1

For >~ ¢, we observe that the sign of two consecutive series ele-
ments changes. Moreover, ¢, — 0, hence it remains to check that
(|en]nen is eventually strictly decreasing (Leibniz criterion). But

n2+1_1 1
Gl==m =ntw

which is strictly decreasing. Hence )" * , ¢, converges.




Checking continuity and/or differentiability 13

Recall from Lecture 7:
» Every differentiable function is continuous.

» “Most” functions possessing an explicit expression are differen-
tiable

» Exceptions: Piecewise defined functions, points outside the do-
main of definition.

Problem: For a function f, given as an expression using known func-
tions, determine the domain of continuity (differentiability)

» Determine the set S of x € R for which f(x) is not well-defined
(for differentiability, consider the value |0| as not well-defined).

» On R\ S, f is continuous (differentiable)

» Forz € S, check continuity (differentiability) by considering lim, ., f(y)
(limy . f'())-



Known function classes 14

» For a € R, the function f(x) = ¢, is differentiable on (0, )
with derivative f'(z) = az®"!. This includes the constant func-
tion f(x) =1 = 2°, with derivative f'(z) = 0.

For n € N, the function f(x) = 2" is differentiable on R, with
derivative f'(x) = nz"~!. The quotient rule entails for g(z) = ™",
that f'(z) = —nz™""L.

» As a consequence, polynomials f : R — R are differentiable.
» f(x) = |z| is continuous on R, differentiable on R \ {0}.

» Trigonometric functions: E.g., sin, cos are differentiable, with sin’ =
cos, cos’ = — sin.

» The exponential function is differentiable, with exp’ = exp.

» Any function that is obtained from the above list by composition
and/or algebraic operations, is again differentiable wherever it is
well-defined.



Example: WS 8, Ex. 2 (e) *

Problem: Given ) |
xolr + 1
fla) = W :

decide where f is continuous, where it is differentiable, compute f’.

Note: f is is made up of known functions.
f(z) is not defined for x = 2.
For z = —1, the enumerator may not be differentiable.

= fis continuous on R \ {2}, and differentiable on R \ {—1, 2}.

For x — 2, we find f(x) — oo. In particular, f is not continuous at 2.



Computing derivatives 16

For the computation of f/, we write

po r < —1
flo) =14 ==& ] cp <
|55 2<e

Each of the pieces is now differentiated separately, which yields

(

(3x2+2x)(95—2)2—x2(x+1) e —loraz>9
P@ =3 a2 sonie B a2
(3 +233)((:c 2)) z (x4 1) g9
\ r — 2)°

As r — —1, z < —1, we obtain f'(z) — —1, and f'(x) — 1, for
r — —1,x2 > 1. Thus f is not differentiable at —1.



Taylor polynomial and residue 17

Problem: Given n + 1 times differentiable f : (a,0) — R and =z,

compute the Taylor polynomial

£ (z0)
n!

Toxo(y) = f(x0)+ f(20)(y — x0) + f”(;o) (y—m0)°+.. .+

and estimate the residue.
Rn,xo(y) — f(y) T Tn,a:g(y)

n

(y — o)

Necessary steps:
» Compute f'(zg), f"(x0), - .., f") (), write down T, .
» For an estimate of R, ,,, find a constant B > 0 such that

vy € (a,0) : [f" D (y)| < M
Then

Wy € (@) : |Runly)] <



Example: WS 8, Ex. 6 (b)

Problem: Compute the Taylor polynomial 75 ,,, for xy = 7/2,
T

flz) = COS(Z sin(z)) .
and estimate the remainder R, ,,(y) for |y — zo| < 0.1.

We compute the derivatives
mwo. s

f(z) = —Sil’l(z SIH(QIZ’))Z cos(x)
f'(z) = — COS(% sin(x)) (%)20082( )+ Sln(— sin(x ))% in(z)
Using sin(m/2) = 1, cos(m/2) = 1, sin(r/4) = cos(r/4) = ¥2, we find
flwo) = vV2/2, f(xo) =0, f"(w) = %
TQ,{EO — { \/17671-( o g)2

18



Example: WS 8, Ex. 6 (b) "

An estimate of the error term requires an upper bound for | f"'(z)]:

o) = sinsina) ( () coso) + et )

+ 3 (%) 2 cos(% sin(z)) sin(x) cos(z)

for all  with |z — 7| < 0.1. We use a rather crude estimate, namely
|sin(x)| < 1, | cos(x)| < 1, and obtain
v

()] < (%)3 4 <Z) 3 (%)2 ~ 3.1204221

Accordingly, if |z — 5| < 0.1, then

< 0.00052007

3
Ry ()] < 3.1204221 } 7'("

3] Y



