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Week 3: Matrices and systems of linear
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Motivation 1

Sample problem: Suppose we are given two solutions of a certain
chemical in water, one with a 2 % concentration, the other with a
10% concentration. Our aim is to mix the two solutions in such a way
that we obtain 3 liters with a 3 % concentration.

Mathematical Formulation. Let x denote the quantity of 2 % con-
centration and y the quantity of 10 % concentration that we use for
mixing.
The fact that we want three litres of the final product gives rise to the
equation

x + y = 3 (1)



J

I

Motivation cont’d 2

Moreover, the amount of substance contributed by quantity x with a 2
% concentration is x·0.02, whereas quantity y of a 10 % concentration
contributes y · 0.10. The concentration after mixing is obtained by
dividing this by the total amount of solution, 3 litres, which results in
the equation

x · 0.02/3 + y · 0.10/3 = 0.03 (2)

We are thus looking for solutions x, y of the system of linear equa-
tions (1) and (2).
Solution. We solve (1) for x, getting x = 3 − y. Plugging this into (2)
gives

(3− y) · 0.02/3 + y · 0.10/3 = 0.03 ⇔ y = 0.375 .

Hence mixing 2.625 litres of the 2 % solution and 0.375 litres of the
10 % is the only way of achieving the desired quantity and concen-
tration.
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General systems of linear equations 3

A system of linear equations with m equations and n variables is a
system

a11x1 + a12x2 + . . . + a1nxn = y1

a21x1 + a22x2 + . . . + a2nxn = y2
... ... ...

am1x1 + am2x2 + . . . amnxn = ym

Here aij ∈ R are called the coefficients of the system, y1, . . . , ym is
the right-hand side. Both the coefficients and the right-hand side are
known.
By contrast, x1, . . . , xn are the variables. Solutions of the system
are all possible vectors (x1, . . . , xn)T such that all equations above
equations are fulfilled simultaneously.
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Central task: Finding all solutions 4

Given a system of linear equations as on the previous slide, we want
to find the set of all solutions, given as

S = {(x1, . . . , xn)T : for all l = 1, . . . ,m : al1x1 + . . . + alnxn = yl}

Any such set will be either empty, contain a single point, or infinitely
many of them. In the latter case, we want a parametrization of S.
This parametrization will usually depend on certain free variables.

There is no simple formula for these sets. We describe a systemati-
cally applicable method for the computation of S.
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Example: Solving a single linear equation 5

Consider the equation x + y − z = 5

How to get all solutions:

I Insert arbitrary real numbers for y, z

I Solving for x gives x = 5− y + z

Hence, the set of all solutions is S = {(5 + y − z, y, z) : y, z ∈ R} .

Observations:

I The set of solutions is parameterized by two free variables y, z ∈
R; i.e., it is a plane in R3.

I Solving for a different variable (e.g., y) results in the same set of
solutions, only in a different parameterization.
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Example: Solving a system of two linear equations 6

Consider the system

x + y − z = 5

x− y − 2z = 3

Substituting the solution x = 5 − y + z for the first into the second
equation provides

5− y + z − y − 2z = 3 ⇔ −2y − z = −2 .

Here, we may choose any value for z, and obtain y = 1− z
2. Plugging

this into the equation for x gives x = 5− y + z = 4 + 3z
2 . Thus, the set

of all solutions is

S =

{(
4 +

3z

2
, 1− z

2
, z

)T

: z ∈ R

}
.
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Observations 7

I The set of solutions is parameterized by one free variable z ∈ R;
i.e., it is a line in R3.

I Solving for a different variable (e.g., y) results in the same set of
solutions, only in a different parameterization.

⇒ Rules of thumb

I Each equation fixes one variable

I The solutions of a system of m equations with n variables is pa-
rameterized by n−m free variables.
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Exceptions to the rule 8

I The system

x + y − z = 5

2x + 2y − 2z = 10

is redundant: Two equations, three variables, but two degrees of
freedom.

I The system

x + y − z = 5

2x + 2y − 2z = 11

is contradictory: It has no solution.

For larger numbers of variables, these cases are not easily recog-
nized.
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Matrix calculus 9

Effective, systematic notation for the treatment of linear equations.

I Matrix by vector multiplication

I Systems of linear equations and matrix-by-vector multiplication

I Simple matrices and their solutions

I Solving linear systems of equations via the Gauss algorithm
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Definition of matrices 10

Definition. Let K denote either R or C, and m, n ∈ N. A m× n-matrix
in K is a mapping A : {1, . . . ,m} × {1, . . . , n} → K, denoted as

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
... ... ...

am1 am2 · · · amn

 = (aij)i=1,...,m
j=1,...,n

= (aij) .

In other words: An m× n matrix is a rectangular array of numbers.
m = number of lines in A = length of columns in A

n = number of columns in A = length of lines in A

The space of m× n-matrices is denoted by Rm×n.
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Multiplying a matrix with a column vector 11

Definition. Given A ∈ Rm×n and x ∈ Rn, the column vector y = A · x
is defined by

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
... ... ...

am1 am2 · · · amn

·


x1

x2
...

xn

 =


a11x1 + a12x2 + . . . + a1nxn

a21x1 + a22x2 + . . . + a2nxn
...
...

am1x1 + am2x2 + . . . + amnxn
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Rules for the matrix-vector product 12

The product of a matrix A ∈ Rk×m with a column vector x ∈ Rn is only
defined if m = n, i.e., if the length of the rows in A equals the length
of x.

Main Property: Linearity.
Let A ∈ Rm×n, x,y ∈ Rn, and s, t ∈ R. Then

A · (sx + ty) = sA · x + tA · y

As before, the “·” is sometimes omitted where no confusion can arise.
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Linear systems of equations and matrices 13

Let A ∈ Rm×n and y ∈ Rm. The matrix-vector equation

A · x = y

is the short-hand form of the system of equations

a11x1 + a12x2 + . . . + a1nxn = y1

a21x1 + a22x2 + . . . + a2nxn = y2
... ... ...

am1x1 + am2x2 + . . . + amnxn = ym

Each column corresponds to an unknown, each row corresponds to
an equation.
Alternatively, one represents the system by the m × (n + 1)-matrix
A′ = (A|y) obtained by appending y as n + 1st column to A.
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An example 14

The linear system

x1 + x2 − x3 = 5

x1 − x2 − 2x3 = 3

is equivalent to (
1 1 −1

1 −1 −2

)
·

 x1

x2

x3

 =

(
5

3

)
alternatively represented by the matrix

A′ =

(
1 1 −1 5

1 −1 −2 3

)



J

I

Homogeneous linear equations 15

Let A ∈ Rm×n, and y ∈ Rm. The equation

A · x = y

is called homogeneous equation if y = 0, and inhomogeneous
otherwise.

Main property of homogeneous equations: If x, z solve the homo-
geneous equation A · x = 0, the same is true for sx + tz, s, t ∈ R
arbitrary: By linearity of the matrix-vector product,

A · (sx + tz) = sA · x + tA · z = s0 + t0 = 0 .
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Solving homogeneous and inhomogeneous equations 16

Theorem 1.
Let y ∈ Rm and A ∈ Rm×n. Let

S(A,y) = {x ∈ Rn : Ax = y}
S(A,0) = {x ∈ Rn : Ax = 0}

i.e., the sets of all solutions to the inhomogeneous and homoge-
neous system, respectively. Suppose that z ∈ S(A,y). Then

S(A,y) = {z + x0 : x0 ∈ S(A,0)}

Hence: In order to find all solutions of the equation Ax = y,

I find one such solution z, and

I determine all solutions x0 of the associated homogeneous system
Ax = 0.
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Gauss elimination: Motivation 17

A systematic solution of linear systems of equations relies on

I Simplification (Gaussian elimination)

I Substitution

Definition. Let A be an m× n-matrix. A is called simple if there exist
indices

1 ≤ l ≤ m and 1 ≤ i1 < i2 < . . . < il ≤ n

such that

aj,ij 6= 0 for j = 1, . . . , l

aj,i = 0 if i < ij or j > l

Informally: ij is the index of the first non-zero entry in the jth line.



J

I

Illustration of simple matrices 18

General form:

A =



0 . . . 0 a1,i1 a1,i1+1 . . . . . . . . . . . . a1,n

0 . . . . . . . . . . . . 0 a2,i2 a2,i2+1 . . . . . . a2,n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . . . . 0 alil . . . al,n

0 . . . . . . . . . . . . . . . . . . . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . . . . . . . . . . . . . 0


A concrete example:

A =


1 3 0 0 −1 7

0 0 2 1 π2 4

0 0 0 2 0 3

0 0 0 0 0 −2

0 0 0 0 0 0
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Solving a simple system of equations 19

Consider the equation
A · x = y

with A an m× n matrix and y ∈ Rm.

Consider the extended m × (n + 1) matrix A′ = (A|y) of the system.
Assume that it is simple, with indices

1 ≤ l ≤ m and 1 ≤ i1 < i2 < . . . < il ≤ n + 1

of the first nonzero entries.

Two cases can arise for the last equation:
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Looking at the last equation 20

First case: il = n + 1. This means that the last nonzero equation
reads

0x1 + . . . + 0xn = bl ,

with bl 6= 0. This does not have a solution, hence the system is not
solvable.

Second case: Here, the last nonzero equation is

al,ilxil + . . . al,nxn = bl

with al,il 6= 0. We can therefore divide by al,il and solve for xil:

xil =
bl

al,il

−
al,il+1

al,il

− . . .− al,n

al,il

xn .

Here xil+1, . . . , xn are free parameters of the solution.
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Solving a simple system of equations, cont’d 21

Having solved the last nonzero equation, we substitute the expres-
sion for xil and the free parameters xil+1, . . . , xn into the second-to-
last equation

al−1,il−1xil−1 + . . . + al−1,nxn = bl−1 .

We can now solve this equation for xil−1, using

al−1,il−1 6= 0 and il−1 < il .

Note that the latter inequality means that the variable xil−1 did not
occur in the equation we solved first.

Working our way up through all equations, we obtain all solutions of
the system.
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General result: Solvability of simple equation systems 22

Theorem 2.
Let A be an m×n matrix, y ∈ Rm. Denote by A′ = (A|y) the extended
matrix. Assume that A′ is simple, with l′ nonzero rows.
Then A is simple, with l nonzero rows.
I If l 6= l′, the equation Ax = y has no solution x ∈ Rn.

I If l = l′, the equation Ax = y has a solution. The general solution
of the equation has n− l free parameters.

 Informally: If we have a simple system A′,
I solvability can be decided by counting nonzero rows of A, A′;

I the rule of thumb, “one nonzero equation fixes one variable” is
applicable.

Definition. The number l from the Theorem is called rank of the linear
system.
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Simplifying systems of linear equations 23

Theorem 3. Let A′, B′ be the extended matrices of systems of linear
equations. Assume that B′ is obtained from A′ by one of the following
operations

I Interchanging two lines of A′.

I Multiplying a line of A′ by a nonzero scalar.

I Adding a scalar multiple of one line to another.
I.e., if b1, . . . , bm denote the lines of B′, and a1, . . . , am the lines of
A′, then there exists 1 ≤ k, l ≤ m, with k 6= l, and s ∈ R such that

bi = ai for i 6= l , bl = al + sak

Then every solution of the system A′ is also a solution for B′ and vice
versa.
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Solving arbitrary systems of equations 24

Remark. The operations from Theorem 3. are called basic transfor-
mations. They can be applied repeatedly without changing the set of
solutions.

Theorem 4. For every matrix A there is a simple matrix B obtainable
by finitely many basic transformations from A.

Corollary. Combining Theorems 2 and 3, the set of solutions of a
linear system of equations A′ = (A|y) is computable in finitely many
steps.

The Gauss algorithm is a method to systematically convert an arbi-
trary system of linear equations to a simple one, and thus to solve
linear systems of equations.
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The Gauss algorithm 25

Given a matrix A, perform the following steps:

1. If A is the zero matrix, we are done. Otherwise, go to step 2.

2. Locate the first nonzero column from the left. One line has a
nonzero entry in this column. If necessary, swap this line with the
first line.

3. After step 2, the first nonzero entry of the first line is in the first
nonzero column. Using this entry, subtract suitable multiples of
the first line from the lines below to eliminate all other entries in
that column.

4. After step 3, the matrix B consisting of the lines below the first line
has at least one more zero column than A. Continue with step 1,
with the smaller matrix B instead of A.
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Summary 26

I Matrices allow a compact notation for writing and solving linear
equations.

I General procedure for solving systems of linear equations.

B Write a linear system Ax = y in extended matrix form A′ =

(A|y).
B Using basic transformations, compute simple matrix B′ having

the same set of solutions as A′ ( Gauss algorithm)
B Using Theorem 2, determine all solutions for the matrix B′.

I Important definitions: Matrix-by-vector product, simple matrices,
the rank of a matrix, homogeneous equations, free variables in
the solution of systems of linear equation, simple transformations,
Gauss algorithm


