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Motivation 1

We want to study the growth of a culture of bacteria. We are given an
initial population, consisting of N bacteria, and our aim is to predict
the number of bacteria after one time unit.

Underlying assumption: At any given time, the reproduction rate
equals one. That is, assuming that the population were constant
over a time interval of length ¢, the population size will have changed
by N -e.

However, the population size will not be constant over any time inter-
val. In order to obtain a good approximation, we subdivide the time
interval into n subintervals of equal length, introducing t, = 0,¢; =
Lt =1.

n’



Motivation cont'd

We then obtain the following approximations of the population size
after each subinterval:

: : 1 . 1
population attime ¢, : N-(1+ ), attimet, : N-(1+—)*, ..
n n

: \"
attme ¢, =1 : N <1+—)
n

Each step depends on the assumption that the population size is
constant in the time between ¢; and ¢, ;.

This assumption should be more accurate as the intervals become
small (i.e., as n becomes large)
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Motivation cont'd 3

We derived N - (1 + %)” as an estimate of the population size at time

1. As n — oo, we expect the estimate to be arbitrarily close to the
true value:

That is, we are interested in the limit of

1 n
xn_N'<1—|—_) 9
n

as n — o0.



A second example

Recall that calculators use rational approximations of real numbers.
Thus we need a mechanism to compute such approximations. The
following is a simple scheme to approximate v/2:

» Start with 2y = 1.
» Given a rational z,,, we define

T, +2/x,

> cQ.

Lp+1 =

Then one can prove that for all n € Ny,
1§$n<xn+1<\/§,

i.e., x,41 is indeed closer to /2 than z,,. Moreover, one expects that
for any predefined precision ¢, sufficiently many repetitions yield a
value that approximates /2 within e.



Sequences

Definition. A sequence of numbers is a rule assigning each natural
number n a real number x,, € R. (Also called a mapping Ny, — R). It
is denoted as
(xk)keNO, or xrg,xq, ...,
Examples:
» Let z,, = r, for all n € N and some fixed »r € R. This defines a
constant sequence.

» Letting z,, = 2n+1, for n € Ny, one obtains the sequence 1,3,5,7, ...
of odd numbers, sorted in ascending order.

» z, = n% forn € Ny, and fixed o
» Example of a recursively defined series: Define (z;,),en, DY

+ 2
ro=1, a:nﬂzan/%(forneNo)



Properties of sequences

Definition. Let (z,),en be a sequence. The sequence is called

1. (monotonically) decreasing if for alln € N, x,,,1 < x,;

2. (monotonically) increasing if foralln € N, z, 1 > x,;

3. monotonic if it is either an increasing or a decreasing sequence;
4. bounded from below if forsomey e Randalln e N, y < z,,;

5. bounded from above if forsomey e Rand alln e N, y > z,,;

6. bounded if it is both bounded from above and from below.

Moreover the sequence is called strictly decreasing (or increasing),
if x,.1 < x, holds (resp. z,,.1 > z,) for all n.



Examples: 7

» Obviously, a decreasing sequence is bounded from above (e.g.,
by v = x¢). Likewise, an increasing sequence is bounded from
below.

» The sequences z, = 2n +1 (n € Ny and y, = n* (n € Ny) are
bounded from below, strictly increasing and not bounded from
above.

» The sequence z, = % (n € N) is strictly decreasing, and bounded
both from above and below: 0 < z,, < 1.

» The sequence (z,),n, Where z, = (1+1)", is increasing and
bounded from above.

» The sequence (z,).cn, defined by

T, +2/x,
2

fulfills 1 < z,, < z,41 < v/2. Hence it is monotonic and bounded.

(TL € N())

xozl,l‘n_HZ



Limit and convergence of sequences

Definition. Let (z,),eny denote a sequence, and x € R. Then (z,),cr
converges to z if for all e > 0 there exists a natural number N =
N(e) € R such that,

Vn > N(e) : |z, —z| <e
In this case, we call = the limit of the sequence, also expressed as

r= lim x, ,
n—oo

and the sequence is called convergent. A sequence that does not
converge, diverges.

e can be understood as “target precision”. Convergence means that
for all target precisions ¢ one can find an index N(e) such that all
sequence elements with index larger than N(e) approximate = with
error at most e.



Cauchy criterion for sequences 9

Theorem 1. Let (x,),cr be a sequence. The sequence has a limit if
and only if it satisfies the Cauchy criterion: For all ¢ > 0 there exists
an M (e) € R such that for all

Vm,n > M(€) : |x, — x| <e€

Observation: We do not need to know the limit to check this criterion.



Convergence vs. boundedness 10

Theorem 2.
Let (x,).cr D€ @ sequence.

(a) The limit is unique, i.e., if + = lim,, ., z, and y = lim,,_.», =, then
T =1.
(b) If the sequence converges, it is bounded.

(c) Assume that the sequence is monotonic. If it is bounded, the
sequence converges to x € R. Otherwise, it converges to +oo.

Example:
» The sequence z, = (1+ %)” is increasing and bounded, hence

converges. The limit
. 1\"
e = lim (1 + —)
n—oo n

is called Euler number, e =~ 2.7182...



Indefinite convergence 1

Definition. Let (x,),en e a sequence. Then

lim z,, = oo
n—oo

holds if for all M € R there exists N = N (M) such that
VYn>NM) : x,> M.

We write

lim z,, = —c0
n—oo

if for all M € R there exists N = N(M) such that
Vn>N(M) : z, <M .



Further examples 12

» The constant sequence z,, = r (for all n € N) converges to r.

» The sequence x,, = 2n + 1 (for n € N) is unbounded, hence diver-
gent. Instead, =, — oc.

» The sequence z, = n® (for n € N) converges to 0 if a < 0, con-
verges to 1 for a = 0, and converges indefinitely for a > 0.

» The alternating sequence z,, = (—1)" (for n € N), is bounded from
below and above, yet divergent.

» The sequence z,, = (—1)"n has neither lower nor upper bound. In
particular, it converges neither to +oo nor to any real number.



Asymptotic growth of sequences 13

Given two indefinitely converging sequences x,, — oo, y, — oo, the
convergence behaviour of 2—: allows to compare their growth for large
n . Important examples are:

» Forall o, 3 > 0,

0 oo a > [
lim — = lim n® ¥ = 1 a=p
n— o0 nﬁ n—oo
a< 3
» Foralla > 0,¢c > 1,

. n? .
lim — =0 ,butalso lim — =0

n—oo C" n—o0 M

wheren!=1-2-...-n. l.e.,as n — oo, (n"),eny grows more slowly

than (¢"),en, Which in turn grows more slowly than (n!),cn:.



Computing with limits

14

Theorem 3. Let (z,)nen, (Yn)neny be sequences, and suppose that

there exists N such that x,, = y, for all n > N. Then
r=lim z, < = lim vy, .
Theorem 4. Let (x,)nen, (yn)nen b€ sequences, and r, s € R. If
r= lim x,, y= lim y,

n—oo n—:oo

then

rr+ sy = lim rx, + sy, ,ry = nh_}rglo TnYn , TY = 7}1_{20 Tnln -

n—oo

(1)

Moreover, if y # 0, then there exists N > 0 such that y, # 0 for all

n > N, and
T Xy,
— = lim — .
y n—>ooyn



Examples and applications 15

» Going back to the initial example: The population after one time

unit ,
lim N - <1+i> = Ne
n—:aoo n
where e is Euler's constant, and N is the initial population.
» We want to compute lim,, .., “5"tL. Dividing both denominator

n2+1

. . . . _q9,—1 -2
and enumerator by n*, we see that this limit equals lim,, .o, *=—=7—.

Using that n=* — 0, for a = 1, 2, the theorem allows to compute

o nf=3n+1 lim,.l—3n"1+n?
lim = :
n—oo  m24+1 lim,, oo 1 +n 2

1
- = 1.
1



Generalizing the example 16

The argument employed for the previous example can be generalized
to the ratio of polynomials:
Corollary. Let P, @ be polynomials, i.e.,

P(x) = apx™ +am_12™ . 4ag, Q) = b + b1z by,
with ag, ..., a,, by, ..., b € R. Assume that a,, # 0 # b.. Then
if
P(n) oo ifm >k

lim —=~ = %—Z if Kk =m

= Q(n) it m < k



Vector-valued sequences 17

Definition. A sequence of vectors is a rule assigning each n € N a
vector x,, € R?. Here the dimension d is independent of n. A vector
x € R?is called limit of the sequence if for all ¢ > 0 there exists N (e)
such that

Vn > N(e) @ |x, —x| <e€

Again, we write x = lim,, o X,,.

Theorem 5. Let (x,),cn be a sequence of vectors in R?, and x € R,
Suppose that

X, = (2,(1),...,2,(d)" |, x = (2(1),...,2(d)" .
Then x = lim,,_. x,, if and only if

Vi=1,...,d : z(j) = lim z,(j) .

n—oo



Examples 18

» The sequence x, = (r,1/n)! converges to (r,0).

» The sequence x,, = (2n + 1,7)! diverges, because the sequence
(2n + 1),en diverges.

» We fix an element of C = R?, and consider the sequence (z"),.cn.
Using |2"| = |z|", one sees that this sequence
> converges to 1if z = 1;
> converges to 0 if |z| < 1 (note that |z" — 0| = |z|" — 0);
> diverges in all other cases.



Series 19

Definition. Let (z,).en, be a sequence. The series >~ x, is the
sequence (v, )nen, Of partial sums

n
ynzzxk:$0+$1+...+xn.
k=0
The series converges to y € R if y = lim,,_ y,, In which case we

write o
y=2 n.
n=0

We say that the series > , =, converges absolutely if >, |x,,| con-
verges.



Examples 20

» Consider the series >~ ,z, for z, = r, the constant sequence.
The partial sum is computed as y, = (n + 1)r, which diverges
unless r = 0.

» The harmonic series }_ 7, < diverges.

» Consider the series >, n_+1 — n—+2 We compute its partial sums:
1 1 1 1 1 1 1 1
e T I R A R
Thus o
= lim y, =1

:On—i—l n—|—2 n—0o0

n



Computing with series 21

Theorem 6.
» The limit of a series is unique.

» Let (z,)nen, (Yn)nen D€ Sequences, and r, s € R. If

00 o0
T=Y Tu, Y=Y Un
n=0 n=0
then .
re + Sy = Zr:cn—l—syn. (2)
n=0

Remark: There are no simple rules for products of series.



The geometric series 22

Let ¢ € R. We want to determine the limit of >~ ¢", if it exists.
We already know that ¢ = 1 will not give a convergent series, hence
q# 1. Lety, =>__,¢". Then we observe that

Yo (1—¢q) = A+qg+g +...+¢)V1—q)
= l+q+d+.. 4+ —q—¢—...—q¢" — ¢
— 1—gq

Thus



The geometric series, cont'd

If |g| > 1, then

l_qn+1
yn:ﬁ

hence the sum diverges. In the other case, ¢"*' — 0 entails that

does not converge , as |q|""! — oo

We have thus proved:

Theorem 7. The sum >~ ¢" converges iff |¢| < 1, with

> 1
n __

23



Convergence criteria 24

Theorem 8. Let (2,,)nen, C R.
(a) > 7, z, converges if it converges absolutely.
(b) Necessary condition: If >~ , z,, converges, then lim,,_., x, = 0.

(c) Let @ > 0. Then Y, n~® converges precisely for o > 1.



Sufficient convergence criteria 25

Theorem 9. Let (x,,)nen, C R.

(a) Majorant criterion: Let >, z, be an absolutely convergent se-
ries such that |z, | < |z,|. Then (x,),.cr cOnverges absolutely.

(b) Quotient criterion: If there exists a constant ¢ with 0 < ¢ < 1, such
that for all n € N, with n > M, |22 < ¢, then > °  z,, converges
absolutely.

(c) Leibniz criterion: Suppose that the sequence (x,),n COnverges
to zero, and fulfills |z,.:| < |z,| as well as z,,1 - x, < 0. Then
>, T, Converges.

Example: The series > >° n~! diverges (Theorem 6.c)). However,
> (=1)"n"! converges, as a consequence of the Leibniz criterion:

n=1
(=1 > =1 (0 + 1)1, and (~1)"n (=1 (4 1) = L




Examples and remarks 26

Example: An important application of the quotient criterion is that the
exponential series Y > L. converges. In fact, this series is related

to Euler’s constant by the equation

Remarks:
» The quotient criterion follows from the convergence of the geo-
metric series by applying the majorant criterion.



Summary 27

Important notions and results

» Convergence of sequences and series, indefinite and absolute
convergence

» Convergence criteria for sequences: Necessary (e.g., bounded-
ness), sufficient (e.g., boundedness and monotonicity)

» Convergence criteria for series: Majorant criterion, quotient crite-
rion

» Important examples: Harmonic and geometric series

» Rules for the computation of limits

Note: It can be easy to determine whether a series or sequence
converges, and hard to find the limit.



