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Week 4: Sequences, series and their limits
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Motivation 1

We want to study the growth of a culture of bacteria. We are given an
initial population, consisting of N bacteria, and our aim is to predict
the number of bacteria after one time unit.

Underlying assumption: At any given time, the reproduction rate
equals one. That is, assuming that the population were constant
over a time interval of length ε, the population size will have changed
by N · ε.

However, the population size will not be constant over any time inter-
val. In order to obtain a good approximation, we subdivide the time
interval into n subintervals of equal length, introducing t0 = 0, t1 =
1
n, . . . , tn = 1.
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Motivation cont’d 2

We then obtain the following approximations of the population size
after each subinterval:

population at time t1 : N · (1 +
1

n
) , at time t2 : N · (1 +

1

n
)2 , . . . ,

at time tn = 1 : N ·
(

1 +
1

n

)n

Each step depends on the assumption that the population size is
constant in the time between ti and ti+1.

This assumption should be more accurate as the intervals become
small (i.e., as n becomes large)
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Motivation cont’d 3

We derived N ·
(
1 + 1

n

)n as an estimate of the population size at time
1. As n → ∞, we expect the estimate to be arbitrarily close to the
true value:

That is, we are interested in the limit of

xn = N ·
(

1 +
1

n

)n

,

as n →∞.
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A second example 4

Recall that calculators use rational approximations of real numbers.
Thus we need a mechanism to compute such approximations. The
following is a simple scheme to approximate

√
2:

I Start with x0 = 1.

I Given a rational xn, we define

xn+1 =
xn + 2/xn

2
∈ Q .

Then one can prove that for all n ∈ N0,

1 ≤ xn < xn+1 <
√

2,

i.e., xn+1 is indeed closer to
√

2 than xn. Moreover, one expects that
for any predefined precision ε, sufficiently many repetitions yield a
value that approximates

√
2 within ε.
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Sequences 5

Definition. A sequence of numbers is a rule assigning each natural
number n a real number xn ∈ R. (Also called a mapping N0 → R). It
is denoted as

(xk)k∈N0, or x0, x1, . . . ,

Examples:
I Let xn = r, for all n ∈ N and some fixed r ∈ R. This defines a

constant sequence.

I Letting xn = 2n+1, for n ∈ N0, one obtains the sequence 1, 3, 5, 7, . . .

of odd numbers, sorted in ascending order.

I xn = nα, for n ∈ N0, and fixed α

I Example of a recursively defined series: Define (xn)n∈N0 by

x0 = 1 , xn+1 =
xn + 2/xn

2
(for n ∈ N0)
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Properties of sequences 6

Definition. Let (xn)n∈N be a sequence. The sequence is called

1. (monotonically) decreasing if for all n ∈ N, xn+1 ≤ xn;

2. (monotonically) increasing if for all n ∈ N, xn+1 ≥ xn;

3. monotonic if it is either an increasing or a decreasing sequence;

4. bounded from below if for some y ∈ R and all n ∈ N, y ≤ xn;

5. bounded from above if for some y ∈ R and all n ∈ N, y ≥ xn;

6. bounded if it is both bounded from above and from below.

Moreover the sequence is called strictly decreasing (or increasing),
if xn+1 < xn holds (resp. xn+1 > xn) for all n.
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Examples: 7

I Obviously, a decreasing sequence is bounded from above (e.g.,
by y = x0). Likewise, an increasing sequence is bounded from
below.

I The sequences xn = 2n + 1 (n ∈ N0 and yn = n2 (n ∈ N0) are
bounded from below, strictly increasing and not bounded from
above.

I The sequence xn = 1
n (n ∈ N) is strictly decreasing, and bounded

both from above and below: 0 < xn < 1.

I The sequence (xn)nN, where xn =
(
1 + 1

n

)n, is increasing and
bounded from above.

I The sequence (xn)n∈N, defined by

x0 = 1 , xn+1 =
xn + 2/xn

2
(n ∈ N0)

fulfills 1 < xn < xn+1 <
√

2. Hence it is monotonic and bounded.
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Limit and convergence of sequences 8

Definition. Let (xn)n∈N denote a sequence, and x ∈ R. Then (xn)n∈R
converges to x if for all ε > 0 there exists a natural number N =

N(ε) ∈ R such that,

∀n > N(ε) : |xn − x| < ε

In this case, we call x the limit of the sequence, also expressed as

x = lim
n→∞

xn ,

and the sequence is called convergent. A sequence that does not
converge, diverges.

ε can be understood as “target precision”. Convergence means that
for all target precisions ε one can find an index N(ε) such that all
sequence elements with index larger than N(ε) approximate x with
error at most ε.
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Cauchy criterion for sequences 9

Theorem 1. Let (xn)n∈R be a sequence. The sequence has a limit if
and only if it satisfies the Cauchy criterion: For all ε > 0 there exists
an M(ε) ∈ R such that for all

∀m, n > M(ε) : |xn − xm| < ε

Observation: We do not need to know the limit to check this criterion.



J

I

Convergence vs. boundedness 10

Theorem 2.
Let (xn)n∈R be a sequence.
(a) The limit is unique, i.e., if x = limn→∞ xn and y = limn→∞ xn, then

x = y.

(b) If the sequence converges, it is bounded.

(c) Assume that the sequence is monotonic. If it is bounded, the
sequence converges to x ∈ R. Otherwise, it converges to ±∞.

Example:
I The sequence xn =

(
1 + 1

n

)n is increasing and bounded, hence
converges. The limit

e = lim
n→∞

(
1 +

1

n

)n

is called Euler number, e ≈ 2.7182...
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Indefinite convergence 11

Definition. Let (xn)n∈N be a sequence. Then

lim
n→∞

xn = ∞

holds if for all M ∈ R there exists N = N(M) such that

∀n > N(M) : xn > M .

We write
lim

n→∞
xn = −∞

if for all M ∈ R there exists N = N(M) such that

∀n > N(M) : xn < M .
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Further examples 12

I The constant sequence xn = r (for all n ∈ N) converges to r.

I The sequence xn = 2n + 1 (for n ∈ N) is unbounded, hence diver-
gent. Instead, xn →∞.

I The sequence xn = nα (for n ∈ N) converges to 0 if α < 0, con-
verges to 1 for α = 0, and converges indefinitely for α > 0.

I The alternating sequence xn = (−1)n (for n ∈ N), is bounded from
below and above, yet divergent.

I The sequence xn = (−1)nn has neither lower nor upper bound. In
particular, it converges neither to ±∞ nor to any real number.
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Asymptotic growth of sequences 13

Given two indefinitely converging sequences xn → ∞, yn → ∞, the
convergence behaviour of xn

yn
allows to compare their growth for large

n . Important examples are:

I For all α, β > 0,

lim
n→∞

nα

nβ
= lim

n→∞
nα−β =


∞ α > β

1 α = β

0 α < β

I For all α > 0, c > 1,

lim
n→∞

nα

cn
= 0 , but also lim

n→∞

cn

n!
= 0

where n! = 1 · 2 · . . . ·n. I.e., as n →∞, (nα)n∈N grows more slowly
than (cn)n∈N, which in turn grows more slowly than (n!)n∈N.
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Computing with limits 14

Theorem 3. Let (xn)n∈N, (yn)n∈N be sequences, and suppose that
there exists N such that xn = yn for all n > N . Then

x = lim
n→∞

xn ⇔ x = lim
n→∞

yn .

Theorem 4. Let (xn)n∈N, (yn)n∈N be sequences, and r, s ∈ R. If

x = lim
n→∞

xn , y = lim
n→∞

yn

then

rx + sy = lim
n→∞

rxn + syn , xy = lim
n→∞

xnyn , xy = lim
n→∞

xnyn . (1)

Moreover, if y 6= 0, then there exists N > 0 such that yn 6= 0 for all
n > N , and

x

y
= lim

n→∞

xn

yn
.
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Examples and applications 15

I Going back to the initial example: The population after one time
unit

lim
n→∞

N ·
(

1 +
1

n

)n

= Ne ,

where e is Euler’s constant, and N is the initial population.

I We want to compute limn→∞
n2−3n+1

n2+1
. Dividing both denominator

and enumerator by n2, we see that this limit equals limn→∞
1−3n−1+n−2

1+n−2 .
Using that n−α → 0, for α = 1, 2, the theorem allows to compute

lim
n→∞

n2 − 3n + 1

n2 + 1
=

limn→∞ 1− 3n−1 + n−2

limn→∞ 1 + n−2
=

1

1
= 1.
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Generalizing the example 16

The argument employed for the previous example can be generalized
to the ratio of polynomials:
Corollary. Let P, Q be polynomials, i.e.,

P (x) = amxm + am−1x
m−1 + . . . + a0 , Q(x) = bkx

k + bk−1x
k−1 + . . . + b0 ,

with a0, . . . , am, b0, . . . , bk ∈ R. Assume that am 6= 0 6= bk. Then

lim
n→∞

P (n)

Q(n)
=


∞ if m > k
am
bk

if k = m

0 if m < k
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Vector-valued sequences 17

Definition. A sequence of vectors is a rule assigning each n ∈ N a
vector xn ∈ Rd. Here the dimension d is independent of n. A vector
x ∈ Rd is called limit of the sequence if for all ε > 0 there exists N(ε)

such that
∀n > N(ε) : |xn − x| < ε

Again, we write x = limn→∞ xn.

Theorem 5. Let (xn)n∈N be a sequence of vectors in Rd, and x ∈ Rd.
Suppose that

xn = (xn(1), . . . , xn(d))T , x = (x(1), . . . , x(d))T .

Then x = limn→∞ xn if and only if

∀j = 1, . . . , d : x(j) = lim
n→∞

xn(j) .
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Examples 18

I The sequence xn = (r, 1/n)T converges to (r, 0).

I The sequence xn = (2n + 1, r)T diverges, because the sequence
(2n + 1)n∈N diverges.

I We fix an element of C = R2, and consider the sequence (zn)n∈N.
Using |zn| = |z|n, one sees that this sequence

B converges to 1 if z = 1;
B converges to 0 if |z| < 1 (note that |zn − 0| = |z|n → 0);
B diverges in all other cases.
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Series 19

Definition. Let (xn)n∈N0 be a sequence. The series
∑∞

n=0 xn is the
sequence (yn)n∈N0 of partial sums

yn =

n∑
k=0

xk = x0 + x1 + . . . + xn .

The series converges to y ∈ R if y = limn→∞ yn, in which case we
write

y =

∞∑
n=0

xn .

We say that the series
∑∞

n=0 xn converges absolutely if
∑∞

n=0 |xn| con-
verges.
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Examples 20

I Consider the series
∑∞

n=0 xn for xn = r, the constant sequence.
The partial sum is computed as yn = (n + 1)r, which diverges
unless r = 0.

I The harmonic series
∑∞

n=1
1
n diverges.

I Consider the series
∑∞

n=0
1

n+1−
1

n+2. We compute its partial sums:

y0 = 1−1

2
, y1 = y0+

1

2
−1

3
= 1−1

2
+

1

2
−1

3
= 1−1

3
, ..., , yn = 1− 1

n + 2

Thus ∞∑
n=0

1

n + 1
− 1

n + 2
= lim

n→∞
yn = 1
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Computing with series 21

Theorem 6.

I The limit of a series is unique.

I Let (xn)n∈N, (yn)n∈N be sequences, and r, s ∈ R. If

x =

∞∑
n=0

xn , y =

∞∑
n=0

yn

then

rx + sy =

∞∑
n=0

rxn + syn . (2)

Remark: There are no simple rules for products of series.
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The geometric series 22

Let q ∈ R. We want to determine the limit of
∑∞

n=0 qn, if it exists.
We already know that q = 1 will not give a convergent series, hence
q 6= 1. Let yn =

∑n
k=0 qk. Then we observe that

yn · (1− q) = (1 + q + q2 + . . . + qn)(1− q)

= 1 + q + q2 + . . . + qn − q − q2 − . . .− qn − .qn+1

= 1− qn+1 .

Thus

yn =
1− qn+1

1− q
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The geometric series, cont’d 23

If |q| > 1, then

yn =
1− qn+1

1− q
does not converge , as |q|n+1 →∞

hence the sum diverges. In the other case, qn+1 → 0 entails that
∞∑

n=0

qn = lim
n→∞

1− qn+1

1− q
=

1

1− q
.

We have thus proved:

Theorem 7. The sum
∑∞

n=0 qn converges iff |q| < 1, with
∞∑

n=0

qn =
1

1− q
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Convergence criteria 24

Theorem 8. Let (xn)n∈N0 ⊂ R.

(a)
∑∞

n=0 xn converges if it converges absolutely.

(b) Necessary condition: If
∑∞

n=0 xn converges, then limn→∞ xn = 0.

(c) Let α > 0. Then
∑∞

n=1 n−α converges precisely for α > 1.
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Sufficient convergence criteria 25

Theorem 9. Let (xn)n∈N0 ⊂ R.

(a) Majorant criterion: Let
∑∞

n=0 zn be an absolutely convergent se-
ries such that |xn| < |zn|. Then (xn)n∈R converges absolutely.

(b) Quotient criterion: If there exists a constant c with 0 < c < 1, such
that for all n ∈ N, with n > M ,

∣∣∣xn+1
xn

∣∣∣ < c, then
∑∞

n=0 xn converges
absolutely.

(c) Leibniz criterion: Suppose that the sequence (xn)n∈N converges
to zero, and fulfills |xn+1| < |xn| as well as xn+1 · xn ≤ 0. Then∑∞

n=0 xn converges.

Example: The series
∑∞

n=1 n−1 diverges (Theorem 6.c)). However,∑∞
n=1(−1)nn−1 converges, as a consequence of the Leibniz criterion:

|(−1)nn−1| > |−1n+1(n + 1)−1|, and (−1)nn−1(−1)n+1(n + 1)−1 = −1
n(n+1).
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Examples and remarks 26

Example: An important application of the quotient criterion is that the
exponential series

∑∞
n=0

xn

n! converges. In fact, this series is related
to Euler’s constant by the equation

∞∑
n=0

xn

n!
= ex .

Remarks:

I The quotient criterion follows from the convergence of the geo-
metric series by applying the majorant criterion.
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Summary 27

Important notions and results

I Convergence of sequences and series, indefinite and absolute
convergence

I Convergence criteria for sequences: Necessary (e.g., bounded-
ness), sufficient (e.g., boundedness and monotonicity)

I Convergence criteria for series: Majorant criterion, quotient crite-
rion

I Important examples: Harmonic and geometric series

I Rules for the computation of limits

Note: It can be easy to determine whether a series or sequence
converges, and hard to find the limit.


