Calculus and Linear Algebra for Biomedical Engineering

Week 6: Continuous Functions
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Motivation: Temperature Measurements (again)

Recall last week’s setup: We have a sequence v, y1, yo,

perature measurements at times ¢t =0,1,2,.... (in hours)
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Do these measurements allow to determine the temperature after

12.7 hours?



A mathematical formulation

Let f: [0, M] — R denote the temperature function.

Measured data:
Measurements f(t) at times tg, t1,to,t3...,tx € [0, M].

Challenge: Given s € [0, M], determine f(s) approximately from

f(to), -, f(tn)-

Plausible answer: Find ¢; closest to s, then hopefully f(¢;) ~ f(s).

Question: Given target precision ¢ > 0, what do we need to know
about f and ¢, ...,ty to ensure that | f(¢;) — f(s)| < ¢, for any s?
This leads to the notion of continuity.



Limit of a function

Definition.
Let f : D — R be a function, with D C R", and let x; € R". Fora € R,
we write

a= lim f(x)
X—X()

if the following two conditions are fulfilled:

» There exists a sequence (x;)reny C D satisfying x # xy, for all
ke N, but x = lim;_. x;.

» For all sequences (x)ren C D satisfying x = limy_, o X,

a= lim f(xy).

k—o0



Continuous functions

Definition.
Let f: D — R be a function, with D C R".

» Let x) € D. fis called continuous at x, if
f(xo) = lim f(x) .

» f is called continuous on D if it is continuous at all x € D.

Theorem 1. (e-d-criterion)
f: D — Ris continuous at x; if and only if for every € > 0 there exists
o > 0 such that

Vy €D @ [xg—y|<d=|[f(x0) = [(¥y)] <e

Note: 6 may depend on x; and e.



lllustration of the e-6-criterion

Continuity of x — /x at xy = 2: Fix e = 0.2.

By monotonicity of the square root:

For all z with |z — 29| < 0.5 (red set),v/1.5 < /z < v/2.5 (green set).
Since v2 — v/1.5,v/2.5 — /2 < ¢, choosing § = 0.5 is sufficient.
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(Note: To prove continuity, we must be able to do this for any ¢ > 0.)



Continuous mappings

Definition.
Let D C R",and f: D — R™. Then

fx) = (fix), fo(x), ..., fu(x))" .

with suitable functions fi, fo,..., f,, : D — R. We say that f is con-
tinuous at x, € D if fi, fo,..., f,, are all continuous at x.

Theorem 2. (e-d-criterion for mappings)
f D — R™is continuous at x; if and only if for every ¢ > 0 there
exists 6 > 0 such that

VyeD : |xg—y| <d=|f(x0) — f(y)] <e



Uniform continuity

Definition.
Let f: D — R be a function, with D c R". Then f is called uniformly
continuous if for every e > 0 there exists 6 > 0 such that

Vx,y €D : [x—y[<d=[f(x) = fy)] <e€

Note: ¢ only depends on e!

Theorem 3.
Let f: D — R, with D C R".

» If f is uniformly continuous, f is continuous.

» Assume n = 1 and D = [a,b], with a,b € R. If f is continuous,
then f is uniformly continuous and bounded.



Examples 8

The functions f : (0,4] — R, with f(z) = 27!, and ¢ : [0,4] — R, with
g(z) = (1 + z)~'. Both functions are continuous, but f is unbounded,
and not uniformly continuous, whereas ¢ is uniformly continuous.
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Uniform continuity and temperature measurements

Let f : [0, M] — R describe the temperature during the time interval
0, M]. Assuming that f is continuous, we know by Theorem 2 that f
is uniformly continuous.

Hence, given target precision ¢ > 0, we find 6 > 0 such that

[s —t] <o =|f(s) = f(t)| <e

Hence, by measuring temperature at ¢, = 0,¢t; = 9,ty = 20,..., we
ensure that each point s € [0, M] has distance at most ¢ to one point
t;. Accordingly,

F(t) — f(s)] <e.

as desired.



Conclusions from the estimate 10

Positive conclusion: By increasing the density of measurements, we
can obtain approximations of any desired precision.

Drawback: We have no method of determining § explicitly, if we don’t
know f.



Classes of continuous functions 11

» f:R" — R, defined by f(x) = |z| is continuous

» Polynomials f : R — R are continuous. This includes affine func-
tions of the form f(z) = ax + .

» Trigonometric functions: sin, cos, tan are continuous on their do-
mains.

» Exponential functions f : R — R, with f(z) = ¢* (for fixed ¢ > 0)
are continuous.

» The function min : R* — R, (z,y) — min(z,y) is continuous. The
same holds for max.

» The function + : R? — R, (z,y) — x + y, is continuous. Similarly,
(z,y) — xy is continuous.



Further examples 12

» If Ais an m x n-matrix, the mapping f : R™ — R" with f(x) = Ax
is continuous.

» Vector addition is continuous, if we identify pairs (x,y) of vectors
in R™ with vectors (z1,..., 2., y1,...,y.) € R*:

+: R =R, (x,y)—X+y
Similarly, scalar multiplication is continuous
R S R, (ryxq,.. ., xn) — (ray, . re)!
» Let f: D — R with

D ={(z,y) e R:y #0}

and f(z,y) = ;. Then f is continuous.



Continuity criteria 13

Concatenation of continuous functions are continuous:
Theorem 3. Let f : D — R™, g : E — R", with E C R”, and assume
that g(F) C D.

1. Letxy € E. If

» ¢ is continuous at x, € F; and
» fis continuous at g(x);

then f o g is continuous at x.

2. If g is continuous on E and f is continuous on D, then f o g is
continuous on F.

This criterion is very useful for showing continuity.



Operations on continuous functions 14

Theorem 4. Let f,g: D — R, with D C R", and xq € D.

» If f, g are continuous at x,, then so are
f-g,rf+sg.

» If f, g are continuous at x; and g(x;) # 0, then g is continuous at
X0

Remark: These statements follow by concatenating known continu-
ous functions.

E.g., if f,g are continuous, then the mapping I : R — R?, z
(f(x), g(x))! is continuous. Also, we know that m : R> — R, where
m(x,y) = zy, IS continuous.

But then f - ¢ = m o F'is continuous.



Application: Computing limits

Assume we want to compute

1 n
y = lim sin \/(1+—)
n—00 n

> lim, o (1 +1)" = e (Euler’s constant)

We know that

» /- : Rj — R is continuous, hence lim,,

» sin : R — R is continuous, hence

y = sin(vVe)

(+1) = v

15



Continuous images of closed and bounded interval 16

Theorem 5.

Let f: D — R, and suppose that [a,b] C D, for a,b € R. Then there
exist r, s € R such that f(|a,b]) = [r, s].

~ A closed and bounded interval (red) is mapped onto a closed and
bounded interval (green)
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Existence of extrema 17

Corollary 1. (Weierstrasse Extreme Value Theorem)
Let f : D — R, and suppose that |a,b] C D, for a,b € R. Then there
exist T, Tmax € |a, b] such that for all = € [a, ),

f(@min) < f(2) < f(@max)

or in other words,

f(@max) = sup{f(x) : # € [a, 0]} , f(@min) = nf{f(z): 2 € [a,0]} .

The point x,. is called a maximum point with maximum f(z.x).
Likewise, .y, is called minimum point with minimum  f (., ).



Caution 18

It is important that f is defined on the closed and bounded interval
la,b]: The function f(x) = 1/x, defined on (0,4], does not have a
maximum. Likewise, no statements are possible for intervals [a, o)
or (—oo, b].

Standard example: f(z) = 1/x, defined on (0, 4].
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Intermediate value theorem 19

Corollary 2. (Intermediate value theorem)
Let f : D — R be continuous, and suppose that [a,b] C D, for a,b €
R. For every y between f(a) and f(b), there exists = € [a,b] with

f(x)=y.

Corollary 3.(Existence of roots) Let f : D — R be continuous, and
suppose that [a,b] C D, for a,b € R. If f(a)f(b) < 0, there exists
x € [a,b] with f(z) =0,

Remark. The condition f(a)f(b) < 0 means that f(a) and f(b) have
different signs.



Application: Searching for roots 20

Corollary 3 can be employed to find roots of a continuous function:
Suppose that f : [a,b] — R is continuous, and f(a)f(b) < 0.

By Corollary 3, we there exists x € |a, b] with f(z) = 0. In general, we
can only hope to find an approximation to .

Pick ¢ € (a,b). Then, either f(c)f(b) < 0or f(a)f(c) < 0.
In the first case, Corollary 3 implies the existence of a root in ¢, b], in
the second case, there must be a root in [a, c|.

In any case, we have narrowed the search down from the interval
a, b] to either [a, c] or [c, b].



lllustration: Subdividing the interval

Sample function: f(x) = 0.5 + 232 cos(z), with £(0) > 0 > f(4).
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lllustration: Subdividing the interval 22

Introducing ¢ = 2: Since f(0)f(2) < 0, we can restrict our search to
the interval [0, 2].




Comparison of continuous functions 23

A further simple application is the following: If the continuous function
f:]a,b] — Rfulfills f(x) # 0 for all z € [a, b], then either f(z) > 0, for
all x € [a, b, or f(x) <0, forall z € [a,b].

Example: Solving inequalities.
We are given a continuous function f : D — R, where D is an interval
(possibly unbounded). We need to determine the set

S={zxeD: f(x) <0}
We assume that f has only finitely many roots, given by

— 0 < T <T< ... Ty <O



Comparison of continuous functions, cont'd 24

We introduce =z, = —oc0 and z,,,1 = oco. By assumption, each interval
(x;, x;+1) contains no roots, hence the sign of f is constant. It can
therefore be determined by evaluating f(y;) for some arbitrary y; €
(xb xi—i—l)-

Hence we determine S as follows:
» Fori=0,...,n: Pick an arbitrary y; € (z;, z;11).
> S = {l’z re=1,... ,n} UU{(QZZ',QZZ'_H) X f(:%) < 0}



Solving inequalities: Example 25

Our aim is to determine the set S of all z € R satisfying
lz—1|+2<5.

Clearly, f(x) = |z — 1| + = — 5 is continuous, and it has z, = 3 as its
only root. Hence, for every closed interval [a, b] contained in (3, c0) or
(—o0, 3), the sign of f is constant on [a, b].

Hence, we only need to check two intervals:

» We pick an arbitrary = € (3, ), say 4. Since f(4) =2 > 0, we
conclude that (3,00) N'S = 0.

» We evaluate f(0) = —5 and conclude that (—o0, 3) C S.
= The set of all solutions to the inequality is given by S = (—o0, 3].

~~ Only two evaluations are needed to obtain a complete solution!



Inverse of continuous functions 26

Theorem 6. Let f : [a,b] — R be continuous.
» fis injective if and only if f is strictly monotonic.

» If f is injective, then the inverse function f~! : f([a,b]) — R is
again continuous.

Examples
» The root functions = — +/x are continuous.
» The arctangent function is continuous.

» A rational function is continuous on its domain.



Summary 27

» Important definitions: Limit of a function, continuity, uniform con-
tinuity.

» Application of continuity to limits of sequences.

» Known classes of continuous functions: Polynomials, absolute
value, min,max, trigonometric functions

» Checking continuity: Continuity is preserved by concatenation,
sums, products, inverse functions,

» Properties of continuous functions: Mean value theorem, Extrema,
etc.

» Application of the properties: Search for roots, solving inequalities



