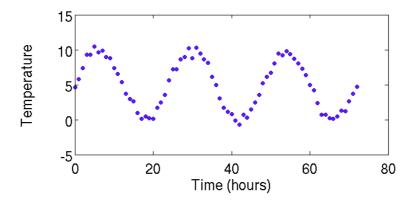
Calculus and Linear Algebra for Biomedical Engineering

Week 6: Continuous Functions

H. Führ, Lehrstuhl A für Mathematik, RWTH Aachen, WS 07

Motivation: Temperature Measurements (again)

Recall last week's setup: We have a sequence $y_0, y_1, y_2, ...$ of temperature measurements at times t = 0, 1, 2, ... (in hours)



Do these measurements allow to determine the temperature after 12.7 hours?

Let $f:[0,M]\to\mathbb{R}$ denote the temperature function.

Measured data:

Measurements f(t) at times $t_0, t_1, t_2, t_3 \dots, t_N \in [0, M]$.

Challenge: Given $s \in [0, M]$, determine f(s) approximately from $f(t_0), \ldots, f(t_N)$.

Plausible answer: Find t_i closest to s, then hopefully $f(t_i) \approx f(s)$.

Question: Given target precision $\epsilon > 0$, what do we need to know about f and t_0, \ldots, t_N to ensure that $|f(t_i) - f(s)| < \epsilon$, for any s? This leads to the notion of continuity.

Definition.

Let $f: D \to \mathbb{R}$ be a function, with $D \subset \mathbb{R}^n$, and let $\mathbf{x}_0 \in \mathbb{R}^n$. For $a \in \mathbb{R}$, we write

$$a = \lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x})$$

if the following two conditions are fulfilled:

- ▶ There exists a sequence $(\mathbf{x}_k)_{k \in \mathbb{N}} \subset D$ satisfying $\mathbf{x} \neq \mathbf{x}_k$, for all $k \in \mathbb{N}$, but $\mathbf{x} = \lim_{k \to \infty} \mathbf{x}_k$.
- ▶ For all sequences $(\mathbf{x}_k)_{k \in \mathbb{N}} \subset D$ satisfying $\mathbf{x} = \lim_{k \to \infty} \mathbf{x}_k$,

$$a = \lim_{k \to \infty} f(\mathbf{x}_k)$$
.

Continuous functions

Definition.

Let $f: D \to \mathbb{R}$ be a function, with $D \subset \mathbb{R}^n$.

▶ Let $\mathbf{x}_0 \in D$. f is called continuous at \mathbf{x}_0 if

$$f(\mathbf{x}_0) = \lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) .$$

ightharpoonup f is called continuous on D if it is continuous at all $\mathbf{x} \in D$.

Theorem 1. (ϵ - δ -criterion)

 $f:D\to\mathbb{R}$ is continuous at \mathbf{x}_0 if and only if for every $\epsilon>0$ there exists $\delta>0$ such that

$$\forall \mathbf{y} \in D : |\mathbf{x}_0 - \mathbf{y}| < \delta \Rightarrow |f(\mathbf{x}_0) - f(\mathbf{y})| < \epsilon$$

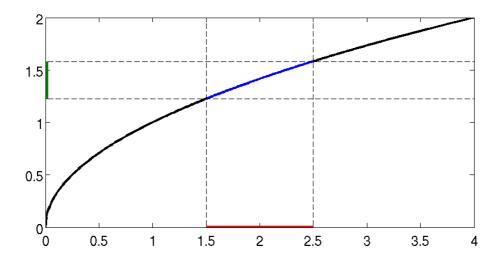
Note: δ may depend on \mathbf{x}_0 and ϵ .

Continuity of $x \mapsto \sqrt{x}$ at $x_0 = 2$: Fix $\epsilon = 0.2$.

By monotonicity of the square root:

For all x with $|x - x_0| < 0.5$ (red set), $\sqrt{1.5} < \sqrt{x} < \sqrt{2.5}$ (green set).

Since $\sqrt{2} - \sqrt{1.5}$, $\sqrt{2.5} - \sqrt{2} < \epsilon$, choosing $\delta = 0.5$ is sufficient.



(Note: To prove continuity, we must be able to do this for any $\epsilon > 0$.)

Definition.

Let $D \subset \mathbb{R}^n$, and $f: D \to \mathbb{R}^m$. Then

$$f(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_m(\mathbf{x}))^T$$

with suitable functions $f_1, f_2, \ldots, f_m : D \to \mathbb{R}$. We say that f is continuous at $\mathbf{x}_0 \in D$ if f_1, f_2, \ldots, f_m are all continuous at \mathbf{x} .

Theorem 2. (ϵ - δ -criterion for mappings)

 $f:D\to\mathbb{R}^m$ is continuous at \mathbf{x}_0 if and only if for every $\epsilon>0$ there exists $\delta>0$ such that

$$\forall \mathbf{y} \in D : |\mathbf{x}_0 - \mathbf{y}| < \delta \Rightarrow |f(\mathbf{x}_0) - f(\mathbf{y})| < \epsilon$$

Uniform continuity

Definition.

Let $f:D\to\mathbb{R}$ be a function, with $D\subset\mathbb{R}^n$. Then f is called uniformly continuous if for every $\epsilon>0$ there exists $\delta>0$ such that

$$\forall \mathbf{x}, \mathbf{y} \in D : |\mathbf{x} - \mathbf{y}| < \delta \Rightarrow |f(\mathbf{x}) - f(\mathbf{y})| < \epsilon$$

Note: δ only depends on ϵ !

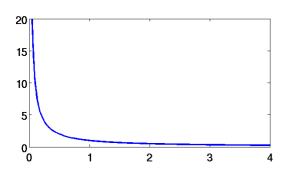
Theorem 3.

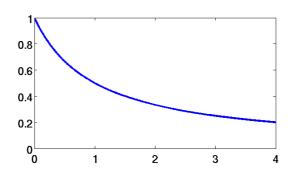
Let $f: D \to \mathbb{R}$, with $D \subset \mathbb{R}^n$.

- ightharpoonup If f is uniformly continuous, f is continuous.
- ▶ Assume n = 1 and D = [a, b], with $a, b \in \mathbb{R}$. If f is continuous, then f is uniformly continuous and bounded.

Examples

The functions $f:(0,4]\to\mathbb{R}$, with $f(x)=x^{-1}$, and $g:[0,4]\to\mathbb{R}$, with $g(x)=(1+x)^{-1}$. Both functions are continuous, but f is unbounded, and not uniformly continuous, whereas g is uniformly continuous.





Uniform continuity and temperature measurements

Let $f:[0,M]\to\mathbb{R}$ describe the temperature during the time interval [0,M]. Assuming that f is continuous, we know by Theorem 2 that f is uniformly continuous.

Hence, given target precision $\epsilon > 0$, we find $\delta > 0$ such that

$$|s-t| < \delta \Rightarrow |f(s) - f(t)| < \epsilon$$

Hence, by measuring temperature at $t_0=0, t_1=\delta, t_2=2\delta, \ldots$, we ensure that each point $s\in [0,M]$ has distance at most δ to one point t_i . Accordingly,

$$|f(t_i) - f(s)| < \epsilon ,$$

as desired.

Positive conclusion: By increasing the density of measurements, we can obtain approximations of any desired precision.

Drawback: We have no method of determining δ explicitly, if we don't know f.

- $ightharpoonup f: \mathbb{R}^n \to \mathbb{R}$, defined by f(x) = |x| is continuous
- ▶ Polynomials $f: \mathbb{R} \to \mathbb{R}$ are continuous. This includes affine functions of the form f(x) = ax + b.
- ▶ Trigonometric functions: \sin, \cos, \tan are continuous on their domains.
- ▶ Exponential functions $f: \mathbb{R} \to \mathbb{R}$, with $f(x) = c^x$ (for fixed c > 0) are continuous.
- ▶ The function $\min : \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto \min(x,y)$ is continuous. The same holds for \max .
- ▶ The function $+: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto x+y$, is continuous. Similarly, $(x,y) \mapsto xy$ is continuous.

- ▶ If A is an $m \times n$ -matrix, the mapping $f : \mathbb{R}^m \to \mathbb{R}^n$ with $f(\mathbf{x}) = A\mathbf{x}$ is continuous.
- ▶ Vector addition is continuous, if we identify pairs (\mathbf{x}, \mathbf{y}) of vectors in \mathbf{R}^n with vectors $(x_1, \dots, x_n, y_1, \dots, y_n)^T \in \mathbb{R}^{2n}$:

$$+: \mathbb{R}^{2n} \to \mathbb{R}^n , (\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x} + \mathbf{y}$$

Similarly, scalar multiplication is continuous

$$\cdot \mathbf{R}^{n+1} \to \mathbf{R}^n$$
, $(r, x_1, \dots, x_n)^T \mapsto (rx_1, \dots, rx_n)^T$.

▶ Let $f: D \to \mathbb{R}$ with

$$D = \{(x, y) \in \mathbb{R} : y \neq 0\}$$

and $f(x,y) = \frac{x}{y}$. Then f is continuous.

Concatenation of continuous functions are continuous:

Theorem 3. Let $f:D\to\mathbb{R}^m$, $g:E\to\mathbb{R}^n$, with $E\subset\mathbb{R}^k$, and assume that $g(E)\subset D$.

- 1. Let $\mathbf{x}_0 \in E$. If
 - ightharpoonup g is continuous at $\mathbf{x}_0 \in E$; and
 - ightharpoonup f is continuous at $g(\mathbf{x}_0)$;

then $f \circ g$ is continuous at \mathbf{x}_0 .

2. If g is continuous on E and f is continuous on D, then $f \circ g$ is continuous on E.

This criterion is very useful for showing continuity.

Theorem 4. Let $f, g: D \to \mathbb{R}$, with $D \subset \mathbb{R}^n$, and $\mathbf{x}_0 \in D$.

▶ If f, g are continuous at x_0 , then so are

$$f \cdot g$$
, $rf + sg$.

▶ If f, g are continuous at \mathbf{x}_0 and $g(\mathbf{x}_0) \neq 0$, then $\frac{f}{g}$ is continuous at \mathbf{x}_0 .

Remark: These statements follow by concatenating known continuous functions.

E.g., if f,g are continuous, then the mapping $F:\mathbb{R}\to\mathbb{R}^2$, $x\mapsto (f(x),g(x))^T$ is continuous. Also, we know that $m:\mathbb{R}^2\to\mathbb{R}$, where m(x,y)=xy, is continuous.

But then $f \cdot g = m \circ F$ is continuous.

Assume we want to compute

$$y = \lim_{n \to \infty} \sin\left(\sqrt{\left(1 + \frac{1}{n}\right)^n}\right) .$$

We know that

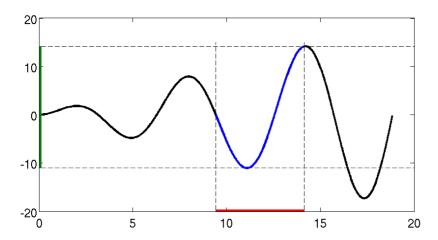
- $ightharpoonup \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$ (Euler's constant)
- $\blacktriangleright \sqrt{\cdot} : \mathbb{R}_0^+ \to \mathbb{R}$ is continuous, hence $\lim_{n \to \infty} \sqrt{\left(1 + \frac{1}{n}\right)^n} = \sqrt{e}$
- ightharpoonup $\sin: \mathbb{R} \to \mathbb{R}$ is continuous, hence

$$y = \sin(\sqrt{e})$$

Theorem 5.

Let $f:D\to\mathbb{R}$, and suppose that $[a,b]\subset D$, for $a,b\in\mathbb{R}$. Then there exist $r,s\in\mathbb{R}$ such that f([a,b])=[r,s].

→ A closed and bounded interval (red) is mapped onto a closed and bounded interval (green)



,

Corollary 1. (Weierstrasse Extreme Value Theorem)

Let $f: D \to \mathbb{R}$, and suppose that $[a, b] \subset D$, for $a, b \in \mathbb{R}$. Then there exist $x_{\min}, x_{\max} \in [a, b]$ such that for all $x \in [a, b]$,

$$f(x_{\min}) \le f(x) \le f(x_{\max})$$
,

or in other words,

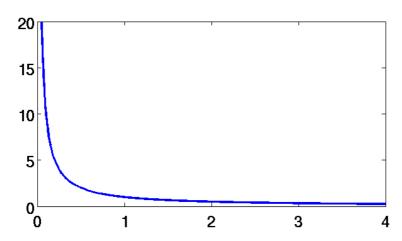
$$f(x_{\text{max}}) = \sup\{f(x) : x \in [a, b]\}, f(x_{\text{min}}) = \inf\{f(x) : x \in [a, b]\}.$$

The point x_{max} is called a maximum point with maximum $f(x_{\text{max}})$. Likewise, x_{min} is called minimum point with minimum $f(x_{\text{min}})$.

Caution

It is important that f is defined on the closed and bounded interval [a,b]: The function f(x)=1/x, defined on (0,4], does not have a maximum. Likewise, no statements are possible for intervals $[a,\infty)$ or $(-\infty,b]$.

Standard example: f(x) = 1/x, defined on (0, 4].



Corollary 2. (Intermediate value theorem)

Let $f:D\to\mathbb{R}$ be continuous, and suppose that $[a,b]\subset D$, for $a,b\in\mathbb{R}$. For every y between f(a) and f(b), there exists $x\in[a,b]$ with f(x)=y.

Corollary 3.(Existence of roots) Let $f:D\to\mathbb{R}$ be continuous, and suppose that $[a,b]\subset D$, for $a,b\in\mathbb{R}$. If f(a)f(b)<0, there exists $x\in[a,b]$ with f(x)=0.

Remark. The condition f(a)f(b) < 0 means that f(a) and f(b) have different signs.

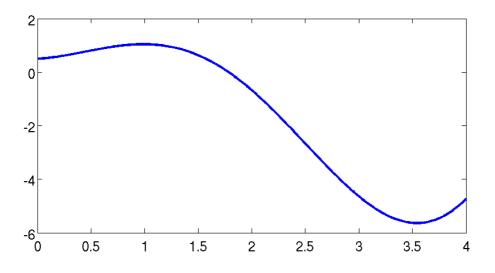
Corollary 3 can be employed to find roots of a continuous function: Suppose that $f:[a,b] \to \mathbb{R}$ is continuous, and f(a)f(b) < 0.

By Corollary 3, we there exists $x \in [a,b]$ with f(x)=0. In general, we can only hope to find an approximation to x.

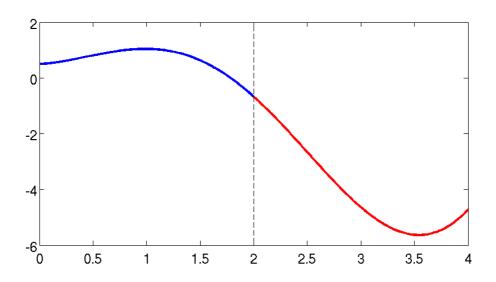
Pick $c \in (a,b)$. Then, either f(c)f(b) < 0 or f(a)f(c) < 0. In the first case, Corollary 3 implies the existence of a root in [c,b], in the second case, there must be a root in [a,c].

In any case, we have narrowed the search down from the interval [a,b] to either [a,c] or [c,b].

Sample function: $f(x) = 0.5 + x^{3/2}\cos(x)$, with f(0) > 0 > f(4).



Introducing c=2: Since f(0)f(2)<0, we can restrict our search to the interval [0,2].



A further simple application is the following: If the continuous function $f:[a,b]\to\mathbb{R}$ fulfills $f(x)\neq 0$ for all $x\in [a,b]$, then either f(x)>0, for all $x\in [a,b]$, or f(x)<0, for all $x\in [a,b]$.

Example: Solving inequalities.

We are given a continuous function $f: D \to \mathbb{R}$, where D is an interval (possibly unbounded). We need to determine the set

$$\mathbb{S} = \{ x \in D : f(x) \le 0 \}$$

We assume that f has only finitely many roots, given by

$$-\infty < x_1 < x_2 < \dots x_n < \infty$$

We introduce $x_0 = -\infty$ and $x_{n+1} = \infty$. By assumption, each interval (x_i, x_{i+1}) contains no roots, hence the sign of f is constant. It can therefore be determined by evaluating $f(y_i)$ for some arbitrary $y_i \in (x_i, x_{i+1})$.

Hence we determine S as follows:

- ightharpoonup For $i=0,\ldots,n$: Pick an arbitrary $y_i\in(x_i,x_{i+1})$.
- $ightharpoonup \mathbb{S} = \{x_i : i = 1, \dots, n\} \cup \bigcup \{(x_i, x_{i+1}) : f(y_i) < 0\}$

Our aim is to determine the set $\mathbb S$ of all $x \in \mathbb R$ satisfying

$$|x-1|+x \le 5.$$

Clearly, f(x) = |x - 1| + x - 5 is continuous, and it has $x_0 = 3$ as its only root. Hence, for every closed interval [a, b] contained in $(3, \infty)$ or $(-\infty, 3)$, the sign of f is constant on [a, b].

Hence, we only need to check two intervals:

- ▶ We pick an arbitrary $x \in (3, \infty)$, say 4. Since f(4) = 2 > 0, we conclude that $(3, \infty) \cap \mathbb{S} = \emptyset$.
- ▶ We evaluate f(0) = -5 and conclude that $(-\infty, 3) \subset \mathbb{S}$.
- \Rightarrow The set of all solutions to the inequality is given by $\mathbb{S} = (-\infty, 3]$.
- → Only two evaluations are needed to obtain a complete solution!

Theorem 6. Let $f:[a,b] \to \mathbb{R}$ be continuous.

- ightharpoonup f is injective if and only if f is strictly monotonic.
- ▶ If f is injective, then the inverse function $f^{-1}:f([a,b])\to \mathbb{R}$ is again continuous.

Examples

- ▶ The root functions $x \mapsto \sqrt[k]{x}$ are continuous.
- ► The arctangent function is continuous.
- ▶ A rational function is continuous on its domain.

- ► Important definitions: Limit of a function, continuity, uniform continuity.
- ► Application of continuity to limits of sequences.
- ► Known classes of continuous functions: Polynomials, absolute value, min,max, trigonometric functions
- Checking continuity: Continuity is preserved by concatenation, sums, products, inverse functions,
- Properties of continuous functions: Mean value theorem, Extrema, etc.
- ► Application of the properties: Search for roots, solving inequalities