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Motivation: Temperature Measurements (yet again)

We have a sequence g, y1, 12, . .. Of temperature measurements at
timest = 0,1,2,.... (in hours) as before. For the determination of
the temperature after 12.7 hours, we suggested to take y;3, simply
because 13 is the closest point in time for which we have a measure-
ment.

A more sophisticated guess for the temperature is obtained by linear
interpolation: We take

Y127 ~ Y12+ 0.7 - (y13 — y12)

The idea is to use information from both neighboring points in time,
weighting the contribution of the different points according to their
distance.



A mathematical formulation

Again we let f : [0, M| — R denote the temperature function.
Measured data:
Measurements f(t) at times 0 = ¢y, t1,t2,t3...,txy = M € [0, M].

Linear interpolation: Given s € [0, M], hence s between t, and ¢, 1,

we define , ,
n+1 n

Hence the graph of g is obtained by connecting the data points
(tn, f(tn))n=o..n by straight lines.

(s —tn)

Question: What do we need to know about f and tg, ..., ¢y, t0
estimate the precision of the approximation f(s) ~ g(s),
for arbitrary s?



Linear interpolation: An illustration

Scatter plot
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Linear interpolation: An illustration

Linear interpolation (often used to visualize discrete data)
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Secant and difference quotient

Definition. Let (a,b) C R be an interval, with xy € (a,b) fixed. Let
f: (a,b) — R be a function.

1. If x € (a,b), the secant to f through x, x is the straight line con-
necting the points (xg, f(z¢)), and (z, f(x)) in the plane.

2. The slope of the secant through z, given as

f(x) — f(zo)

r — Xy

Afag(r) = Ap(x) =

is called the difference quotient associated to z, z.



Examples

Two secants to the function f(z) = xsin(wz) (blue curve) through
Ty = 1
Green: x = 1.5, Red: x = 1.75




Definition of the derivative

Definition. Let D c Rand f: D — R, xy € D.
(a) fis called differentiable at x if, for some 6 > 0, (xq—9, x9+3d) C D,
and in addition,

o= lim Ay, (z) = f(x) — flzo) (1)

T—1 T — X

exists in R.

(b) If f is differentiable, the limit « in (1) is called derivative of f at xy,

and denoted by
d
f(zg) := %(xo) = .
(c) If f is differentiable at all xy € D, the function D > z — f'(z) is
called derivative function or just derivative of f.



Interpretations of the derivative

» Graphically, the derivative is the slope of the tangent to the graph
through (¢, f(z0)). Alternatively, it can be interpreted as the slope
of the graph at x.

The graph of a differentiable function is characterized by the prop-
erty that it has no sharp corners or bends.

» The common physical interpretation is velocity: If f(¢) denotes the
distance of an object travelling along a straight line ¢, the velocity
with which the object moves at time ¢ is f’(¢), in this context often
denoted f(t).

» In the modelling of biological or chemical processes, the deriva-
tive of a population size or chemical quantity describes its growth
rate.



Example

The tangent to the function f(z) = xzsin(mx) (blue curve) through
oy — 1




A continuous nondifferentiable function

The function f(x) = |x| is differentiable at x, # 0, but not at =, = 0.

y A
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Properties: Continuity, Mean value theorem B

Theorem 1.
Let f: D — R be differentiable. Then f is continuous.

Theorem 2. (Mean value theorem)

Let f : D — R be continuous on [z, y| and differentiable on (z,y).
Then there exists z € (z,y) such that

fly) — f(x)
y—x

= f(2).



lllustration of the mean value theorem 12

The function f(z) = zsin(z), x = 1,y = 1.75. There exists z between
x,y such that the tangent to f at z (red line) is parallel to the secant

through (z, f(2)), (y, f(y)) (green).




Rules for the computation of derivatives 13

Theorem 3. Let f, g : D — R be differentiable functions.
» Linearity: For all s,t € R, sf + tg is differentiable on D, wtih (sf +
tg) =sf' +tg'.
» Product rule: The function f-g: D — R, (f-g)(x) = f(z)g(x), IS
differentiable with (f - g) = f"-g+ f - ¢.

» Quotient rule: Suppose that g(z) # 0 for all x € D. Then the map
h(z) = £ is differentiable on D, with

g()
fl(x)g(x) — f(x)g'(v)
g(z)? '

h'(x) =

» Chain rule: Suppose that » : E — R is differentiable on E, with
h(E) C D. Then go h : E — E is differentiable on F, with (g o

h)(x) = ¢ (h(z))' (z).



Known classes of differentiable functions 14

» For a € R, the function f(x) = ¢, is differentiable on (0, )
with derivative f'(z) = az“"!. This includes the constant func-
tion f(z) = 1 = 2, with derivative f'(z) = 0.

» For s € R, the function f(z) = z*, is differentiable on R; with
derivative f’'(x) = sz*!. This includes the constant function f(z) =
1 = 2°, with derivative f'(x) = 0.

» By the quotient rule, the previous item entails for all n € N and
f(x) =2 that f'(z) = nz" L.

» As a consequence, polynomials f : R — R are differentiable.

» Trigonometric functions: sin, cos, tan are differentiable on their do-
mains, with sin’ = cos, cos’ = — sin.



Example: Computing a derivative 15

We are given the function f(z) = (z* + 222 = (g1 0 (g2 + g3)) (%),
where

> gu(t) = 12, with g (1) = 57 = L

> golt) = o2, With gh(t) = 22

> g3(t) = a2, with g4(t) = 4.
Applying the chain rule gives
f'(@) = gi(g2(@) + g3(2)) - (g5(2) + g5()) ,

and plugging in the derivatives, we obtain

fl(z) = 1 (2z, + da?)= kL
2\/a:4+952) 97(’;) ;(/@ vVt + 22
N 2 3

g, (gol) + gs(x)))



Example: Computing a derivative 16

We are given the function f(z) = \/sin(z?) = (g1 © g2 © g3)(x), where
t2 1

2 21/t

> go(t) = sin(t), with g5(t) = cos(t);

> g3(t) = t*, with g(t) = 2t.
Applying the chain rule twice gives

> gi(t) = /%, with ¢/ (1)

f(x) = g1(g2(95(2))) - (g2 © g3)' () = g1 (g2(g3())) - g5(g3(x)) - g5() ,
and plugging in the derivatives, we obtain

1
"(x) = cos(z? 2r =
@) 24/sin(z?) ng(/(;%) gév(x) sin(x?)
Glgalgs(x)

x cos(x?)




Higher order derivatives 17

Definition. Let D Cc R and f : D — R be a differentiable function.

» If ' is differentiable on D, we call the derivative of [’ second
derivative of f, denoted by
d2f df/
(2) . prr._ .:
= 1" T3
The function f is then called twice differentiable.

» More generally, if f is n-time differentiable (with n € N), such that
its nth derivative £ is differentiable again, the n + 1st derivative
of f is defined as

dn+1f df(n)

dentl ™ dx

f is then called n + 1 times differentiable.

We use ", " etc. for the third, fourth etc. derivative .

If all derivatives exist, f is called infinitely differentiable.

f(n+1) .




Examples 18

» The function f(z) = 2" has derivative f'(x) = na""!. Repeated
differentiation gives

nn=1)-...-n—k+1z"* kE<n
f(k)(x){ 0 k>n

In particular, f is infinitely differentiable. As a consequence, poly-
nomials are infinitely differentiable.

» The function f(x) = sin(x) is infinitely differentiable: f'(x) = cos(x),
f"(x) = —sin(x) = — f(z). Hence we can differentiate sin infinitely
many times.

» The function

o ={% 728

0 <0

is differentiable, but not twice differentiable on R: f’ is not differ-
entiable at 0.



Taylor’s theorem 19

Theorem. (Taylor)

Let D c Rand f: D — R be n + 1 times differentiable. Let xy,y € D
be such that all points between zy,y are in D. Then there exists =
between (z,y) such that

fly) = > (y — )" + CEEAA )
" T ) (n) T
= flao) + £y — o)+ 0y g g Ty
f(n+1>(z) n+1
+(n—|—1)!(y_$0) ’

whereweusedn! =1-2-... -n.



Taylor polynomial

Definition. If f is n 4+ 1 times differentiable, the polynomial

" ()
Toaoly) = F(0)+ Py =) + 0y gy 4 L
is called Taylor polynomial of f of degree n. The difference
B B f(n+1)(z) -

is called the remainder term.

20



Interpretation of the Taylor polynomial 21

By Taylor’s theorem,

fU ()
—T, ., _J 9
FW) = Toao(y) 1]
As f"+1) is continuous, there exists M > 0 such that f**V(z) < M
for all = between y, zy, and thus

M M
’f(y) nxo( )| >~ ( >'|y—x0] < (n+1)!6

(y - 55’0)”+1 .

n

if |y — 20| < 0. The right-hand side goes to zero as ¢ — 0.
Note: The speed with which ¢" — 0 for ¢ — 0 increases with n.

Hence, T, ., is a polynomial approximation of f near x,. The quality
of approximation increases as n — oc.



Back to the initial example 22

Measured data:
Measurements f(t) attimes 0 = ¢y, t1,t2,t3...,tx = M € [0, M].

Linear interpolation: Given s € [0, M], hence s between t, and ¢, 1,

we define
f(tni1) = f(tn)

tn—i—l - tn

g(‘S) — f(tn) + (S - tn)

Wanted: An estimate for | f(s) — g(s)|.



Estimating the approximation error 23

We assume f to be twice differentiable on [0, M]. In particular, | f"(2)| <
K, for all z € [0, M], with K a suitable constant.

Using the mean value theorem, we obtain

g(s) = ftn) + ['(2)(s — t) ,

for z between s and ¢,,.

Moreover, using Taylor approximation of degree one,

Fs) = F(t) + F (s — ta) + LW (s )2

2
with y between s and ¢,,. Hence,

f(s) = gls) = (f'(tn) = f'(2))(s — tn) +

()
2

(s —t,)%. (2)



Estimating the approximation error 24

Applying the mean value theorem to f’, we obtain

f(tn) = f'(2) = f'(r)(tn — 2)

with » between ¢,, and z.

In particular: Assume that¢,., — ¢, = 6. Then |s —t,| < J, and if z is
between s and ¢,,, also |t, — z| < §, and thus

(F(t) P — )l + 152 (s — 1)

(1F" () + 1" (y)])0”
2K6% .

| f(s) — g(s)]

IAIA A



Conclusions 25

Positive conclusion: As the distance ¢ of neighboring measurement
points decreases, the approximation error can be estimated by a

quadratic function of 4.
(~~ Rule of thumb: Doubling the number of measurements results in

dividing the approximation error by four.)

Drawback: If we don’t know f, how do we estimate the constant K ?



Summary 26

» Important definitions: Secant, difference quotient, derivative of a
function

» Properties of differentiable functions: Continuity, Mean value the-
orem

» Known classes of differentiable functions: Polynomials, trigono-
metric functions, powers, roots

» Computational rules for derivatives: Linearity, product rule, chain
rule

» Higher derivatives, Taylor's theorem



