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Motivation: Temperature Measurements (yet again) 1

We have a sequence y0, y1, y2, . . . of temperature measurements at
times t = 0, 1, 2, . . .. (in hours) as before. For the determination of
the temperature after 12.7 hours, we suggested to take y13, simply
because 13 is the closest point in time for which we have a measure-
ment.

A more sophisticated guess for the temperature is obtained by linear
interpolation: We take

y12.7 ≈ y12 + 0.7 · (y13 − y12)

The idea is to use information from both neighboring points in time,
weighting the contribution of the different points according to their
distance.
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A mathematical formulation 2

Again we let f : [0, M ] → R denote the temperature function.
Measured data:
Measurements f (t) at times 0 = t0, t1, t2, t3 . . . , tN = M ∈ [0, M ].

Linear interpolation: Given s ∈ [0, M ], hence s between tn and tn+1,
we define

g(s) = f (tn) +
f (tn+1)− f (tn)

tn+1 − tn
(s− tn)

Hence the graph of g is obtained by connecting the data points
(tn, f(tn))n=0,...,N by straight lines.

Question: What do we need to know about f and t0, . . . , tN , to
estimate the precision of the approximation f (s) ≈ g(s),
for arbitrary s?
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Linear interpolation: An illustration 3

Scatter plot
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Linear interpolation: An illustration 4

Linear interpolation (often used to visualize discrete data)
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Secant and difference quotient 5

Definition. Let (a, b) ⊂ R be an interval, with x0 ∈ (a, b) fixed. Let
f : (a, b) → R be a function.

1. If x ∈ (a, b), the secant to f through x0, x is the straight line con-
necting the points (x0, f(x0)), and (x, f (x)) in the plane.

2. The slope of the secant through x, given as

∆f,x0(x) = ∆f(x) =
f (x)− f (x0)

x− x0

is called the difference quotient associated to x, x0.
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Examples 6

Two secants to the function f (x) = x sin(πx) (blue curve) through
x0 = 1

Green: x = 1.5, Red: x = 1.75
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Definition of the derivative 7

Definition. Let D ⊂ R and f : D → R, x0 ∈ D.

(a) f is called differentiable at x0 if, for some δ > 0, (x0−δ, x0+δ) ⊂ D,
and in addition,

α = lim
x→x0

∆f,x0(x) =
f (x)− f (x0)

x− x0
(1)

exists in R.

(b) If f is differentiable, the limit α in (1) is called derivative of f at x0,
and denoted by

f ′(x0) :=
df

dx
(x0) := α .

(c) If f is differentiable at all x0 ∈ D, the function D 3 x 7→ f ′(x) is
called derivative function or just derivative of f .
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Interpretations of the derivative 8

I Graphically, the derivative is the slope of the tangent to the graph
through (x0, f(x0)). Alternatively, it can be interpreted as the slope
of the graph at x0.
The graph of a differentiable function is characterized by the prop-
erty that it has no sharp corners or bends.

I The common physical interpretation is velocity: If f (t) denotes the
distance of an object travelling along a straight line t, the velocity
with which the object moves at time t is f ′(t), in this context often
denoted ḟ (t).

I In the modelling of biological or chemical processes, the deriva-
tive of a population size or chemical quantity describes its growth
rate.
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Example 9

The tangent to the function f (x) = x sin(πx) (blue curve) through
x0 = 1
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A continuous nondifferentiable function 10

The function f (x) = |x| is differentiable at x0 6= 0, but not at x0 = 0.
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Properties: Continuity, Mean value theorem 11

Theorem 1.
Let f : D → R be differentiable. Then f is continuous.

Theorem 2. (Mean value theorem)
Let f : D → R be continuous on [x, y] and differentiable on (x, y).
Then there exists z ∈ (x, y) such that

f (y)− f (x)

y − x
= f ′(z) .
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Illustration of the mean value theorem 12

The function f (x) = x sin(x), x = 1, y = 1.75. There exists z between
x, y such that the tangent to f at z (red line) is parallel to the secant
through (x, f (x)), (y, f (y)) (green).
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Rules for the computation of derivatives 13

Theorem 3. Let f, g : D → R be differentiable functions.

I Linearity: For all s, t ∈ R, sf + tg is differentiable on D, wtih (sf +

tg)′ = sf ′ + tg′.

I Product rule: The function f · g : D → R, (f · g)(x) = f (x)g(x), is
differentiable with (f · g)′ = f ′ · g + f · g′.

I Quotient rule: Suppose that g(x) 6= 0 for all x ∈ D. Then the map
h(x) = f(x)

g(x) is differentiable on D, with

h′(x) =
f ′(x)g(x)− f (x)g′(x)

g(x)2
.

I Chain rule: Suppose that h : E → R is differentiable on E, with
h(E) ⊂ D. Then g ◦ h : E → E is differentiable on E, with (g ◦
h)(x) = g′(h(x))h′(x).
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Known classes of differentiable functions 14

I For α ∈ R, the function f (x) = xα, is differentiable on (0,∞)

with derivative f ′(x) = αxα−1. This includes the constant func-
tion f (x) = 1 = x0, with derivative f ′(x) = 0.

I For s ∈ R, the function f (x) = xs, is differentiable on R+
0 with

derivative f ′(x) = sxs−1. This includes the constant function f (x) =

1 = x0, with derivative f ′(x) = 0.

I By the quotient rule, the previous item entails for all n ∈ N and
f (x) = x−n, that f ′(x) = nxn−1.

I As a consequence, polynomials f : R → R are differentiable.

I Trigonometric functions: sin, cos, tan are differentiable on their do-
mains, with sin′ = cos, cos′ = − sin.
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Example: Computing a derivative 15

We are given the function f (x) = (x4 + x2)1/2 = (g1 ◦ (g2 + g3))(x),
where

I g1(t) = t1/2, with g′1(t) = t−1/2

2 = 1
2
√

t
;

I g2(t) = x2, with g′2(t) = 2x;

I g3(t) = x4, with g′3(t) = 4x3.

Applying the chain rule gives

f ′(x) = g′1(g2(x) + g3(x)) · (g′2(x) + g′3(x)) ,

and plugging in the derivatives, we obtain

f ′(x) =
1

2
√

x4 + x2)︸ ︷︷ ︸
g′1(g2(x) + g3(x)))

( 2x︸︷︷︸
g′2(x)

+ 4x3︸︷︷︸
g′3(x)

) =
x + 2x3

√
x4 + x2
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Example: Computing a derivative 16

We are given the function f (x) =
√

sin(x2) = (g1 ◦ g2 ◦ g3)(x), where

I g1(t) = t1/2, with g′1(t) = t−1/2

2 = 1
2
√

t
;

I g2(t) = sin(t), with g′2(t) = cos(t);

I g3(t) = t2, with g′3(t) = 2t.

Applying the chain rule twice gives

f ′(x) = g′1(g2(g3(x))) · (g2 ◦ g3)
′(x) = g′1(g2(g3(x))) · g′2(g3(x)) · g′3(x) ,

and plugging in the derivatives, we obtain

f ′(x) =
1

2
√

sin(x2)︸ ︷︷ ︸
g′1(g2(g3(x)))

cos(x2)︸ ︷︷ ︸
g′2(g3(x))

2x︸︷︷︸
g′3(x)

=
x cos(x2)√

sin(x2)
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Higher order derivatives 17

Definition. Let D ⊂ R and f : D → R be a differentiable function.
I If f ′ is differentiable on D, we call the derivative of f ′ second

derivative of f , denoted by

f (2) := f ′′ :=
d2f

dx2
:=

df ′

dx
.

The function f is then called twice differentiable.

I More generally, if f is n-time differentiable (with n ∈ N), such that
its nth derivative f (n) is differentiable again, the n + 1st derivative
of f is defined as

f (n+1) :=
dn+1f

dxn+1
:=

df (n)

dx
.

f is then called n + 1 times differentiable.
We use f ′′′, f ′′′′ etc. for the third, fourth etc. derivative .
If all derivatives exist, f is called infinitely differentiable.



J

I

Examples 18

I The function f (x) = xn has derivative f ′(x) = nxn−1. Repeated
differentiation gives

f (k)(x) =

{
n · (n− 1) · . . . · (n− k + 1)xn−k k ≤ n

0 k > n
.

In particular, f is infinitely differentiable. As a consequence, poly-
nomials are infinitely differentiable.

I The function f (x) = sin(x) is infinitely differentiable: f ′(x) = cos(x),
f ′′(x) = − sin(x) = −f (x). Hence we can differentiate sin infinitely
many times.

I The function

f (x) =

{
x2 x ≥ 0

0 x < 0

is differentiable, but not twice differentiable on R: f ′ is not differ-
entiable at 0.
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Taylor’s theorem 19

Theorem. (Taylor)
Let D ⊂ R and f : D → R be n + 1 times differentiable. Let x0, y ∈ D

be such that all points between x0, y are in D. Then there exists z

between (x0, y) such that

f (y) =

n∑
k=0

f (k)(x0)

k!
(y − x)k +

f (n+1)(z)

(n + 1)!
(y − x0)

n+1

= f (x0) + f ′(x)(y − x0) +
f ′′(x0)

2
(y − x0)

2 + . . . +
f (n)(x0)

n!
(y − x0)

n

+
f (n+1)(z)

(n + 1)!
(y − x0)

n+1 ,

where we used n! = 1 · 2 · . . . · n.
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Taylor polynomial 20

Definition. If f is n + 1 times differentiable, the polynomial

Tn,x0(y) = f (x0)+f ′(x)(y−x0)+
f ′′(x0)

2
(y−x0)

2 + . . .+
f (n)(x0)

n!
(y−x0)

n

is called Taylor polynomial of f of degree n. The difference

Rn,x0(y) = f (x)− Tn,x0(y) =
f (n+1)(z)

(n + 1)!
(y − x0)

n+1

is called the remainder term.
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Interpretation of the Taylor polynomial 21

By Taylor’s theorem,

f (y)− Tn,x0(y) =
f (n+1)(z)

(n + 1)!
(y − x0)

n+1 .

As f (n+1) is continuous, there exists M > 0 such that f (n+1)(z) ≤ M

for all z between y, x0, and thus

|f (y)− Tn,x0(y)| ≤ M

(n + 1)!
|y − x0|n <

M

(n + 1)!
εn

if |y − z0| < 0. The right-hand side goes to zero as ε → 0.

Note: The speed with which εn → 0 for ε → 0 increases with n.

Hence, Tn,x0 is a polynomial approximation of f near x0. The quality
of approximation increases as n →∞.
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Back to the initial example 22

Measured data:
Measurements f (t) at times 0 = t0, t1, t2, t3 . . . , tN = M ∈ [0, M ].

Linear interpolation: Given s ∈ [0, M ], hence s between tn and tn+1,
we define

g(s) = f (tn) +
f (tn+1)− f (tn)

tn+1 − tn
(s− tn)

Wanted: An estimate for |f (s)− g(s)|.
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Estimating the approximation error 23

We assume f to be twice differentiable on [0, M ]. In particular, |f ′′(z)| ≤
K, for all z ∈ [0, M ], with K a suitable constant.

Using the mean value theorem, we obtain

g(s) = f (tn) + f ′(z)(s− tn) ,

for z between s and tn.

Moreover, using Taylor approximation of degree one,

f (s) = f (tn) + f ′(tn)(s− tn) +
f ′′(y)

2
(s− tn)2 ,

with y between s and tn. Hence,

f (s)− g(s) = (f ′(tn)− f ′(z))(s− tn) +
f ′′(y)

2
(s− tn)2 . (2)
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Estimating the approximation error 24

Applying the mean value theorem to f ′, we obtain

f ′(tn)− f ′(z) = f ′′(r)(tn − z)

with r between tn and z.

In particular: Assume that tn+1 − tn = δ. Then |s− tn| < δ, and if z is
between s and tn, also |tn − z| < δ, and thus

|f (s)− g(s)| ≤ |(f ′(tn)− f ′(z))(s− tn)| + |f
′′(y)

2
(s− tn)2|

≤ (|f ′′(r)| + |f ′′(y)|)δ2

≤ 2Kδ2 .
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Conclusions 25

Positive conclusion: As the distance δ of neighboring measurement
points decreases, the approximation error can be estimated by a
quadratic function of δ.
( Rule of thumb: Doubling the number of measurements results in
dividing the approximation error by four.)

Drawback: If we don’t know f , how do we estimate the constant K?
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Summary 26

I Important definitions: Secant, difference quotient, derivative of a
function

I Properties of differentiable functions: Continuity, Mean value the-
orem

I Known classes of differentiable functions: Polynomials, trigono-
metric functions, powers, roots

I Computational rules for derivatives: Linearity, product rule, chain
rule

I Higher derivatives, Taylor’s theorem


