Calculus and Linear Algebra for Biomedical Engineering

Week 8: Applications of differential calculus

H. Führ, Lehrstuhl A für Mathematik, RWTH Aachen, WS 07

Motivation

Consider the function $f(x) = 2x^2 - \sqrt{x}$ on the interval [0, 1].

1

f is continuous on $[0, \pi]$, hence we know that there exist x_{max} and $x_{\min} \in [0, \pi]$ such that

 $f(x_{\max}) = \max\{f(x) : 0 \le x \le \pi\}$, $f(x_{\min}) = \min(\{f(x) : 0 \le x \le \pi\}$.

How do we find $x_{\text{max}}, x_{\text{min}}$? How do we determine monotonicity of f?

Theorem 1.

Let $f : [a, b] \to \mathbb{R}$ be continuous, and differentiable on (a, b).

- ▶ f is increasing on [a, b] iff $f'(x) \ge 0$, for all $x \in (a, b)$.
- ▶ *f* is strictly increasing on [a, b] if f'(x) > 0, for all $x \in (a, b)$.
- ▶ *f* is decreasing on [a, b] iff $f'(x) \leq 0$, for all $x \in (a, b)$.
- ▶ *f* is strictly decreasing on [a, b] if f'(x) < 0, for all $x \in (a, b)$.

(Partial) Proof: Assume that $x, y \in (a, b)$ with x < y. By the mean value theorem,

$$\frac{f(y) - f(x)}{y - x} = f'(z) ,$$

for a suitable *z* between *x* and *y*. Since y > x, this equation implies that $f(y) - f(x) \ge 0$ iff $f'(z) \ge 0$.

Let *f* be continuously differentiable on (a, b), and suppose that *f'* has only finitely many roots in (a, b). Then the monotonicity behaviour of *f* is determined as follows:

- Compute f'.
- ▶ Compute all roots x_0, \ldots, x_k of f' in (a, b).
- ▶ In each interval (x_i, x_{i+1}) , determine the sign of f' by evaluating $f'(c_i)$, for suitable $c_i \in (x_i, x_{i+1})$.
- ▶ On $[x_i, x_{i+1}]$, *f* is strictly increasing, if $f'(c_i) > 0$; otherwise *f* is strictly decreasing.

An example

Consider $f(x) = x^3 - 10x^2 - 7x + 50$

Hence, f' has roots -1/3 and 7

f (blue) increases wherever f' (red) is positive. Hence:

- ▶ f'(x) > 0 for $x \in (-\infty, -1/3)$ and $x \in (7, \infty)$ implies: f is strictly increasing on $(-\infty, -1/3]$ and on $[7, \infty)$.
- ▶ f'(x) < 0 in (-1/3, 7) implies: f is strictly decreasing on [-1/3, 7].

Extreme values

Definition: Let $f : [a, b] \to \mathbb{R}$, and $x_0 \in [a, b]$.

- ► x_0 is called local minimum point if for a suitable $\delta > 0$ and all $x \in (b \delta, b + \delta) \cap [a, b], f(x_0) \leq f(x)$
- ► x_0 is called local maximum point if for a suitable $\delta > 0$ and all $x \in (b \delta, b + \delta) \cap [a, b]$, $f(x_0) \ge f(x)$
- ► x_0 is called global minimum point of f on [a, b] if for all $x \in [a, b]$, $f(x_0) \leq f(x)$.
- ► x_0 is called global maximum point of f on [a, b] if for all $x \in [a, b]$, $f(x_0) \ge f(x)$.
- The local (or global) minimum and maximum points are called local (or global) extrema.

Note: Global extrema are local extrema as well.

Illustration: Extreme values

The function $f(x) = x^3 - 10x^2 - 7x + 50$ has two local maximum and two local minimum points in the interval [-3, 10] (which will be determined later).

Theorem 2

Let $f : [a, b] \to \mathbb{R}$, and $x \in [a, b]$.

- Suppose that *f* is decreasing in $(x \delta, x] \cap [a, b]$, and increasing in $[x, x + \delta)$, for some $\delta > 0$. Then *x* is a local minimum point.
- Suppose that *f* is increasing in $(x \delta, x] \cap [a, b]$, and decreasing in $[x, x + \delta)$, for some $\delta > 0$. Then *x* is a local maximum point.

Informally:

- If f increases to the left of x and decreases to the right of x, then x is a local maximum point.
- For the boundary points a, b, only one-sided behaviour must be considered.

Theorem 3.

Let $f : [a, b] \to \mathbb{R}$ be continuous, and differentiable on (a, b).

- ▶ If $x \in [a, b]$ is such that $f'(y) \leq 0$ for all $y \in (x \delta, x) \cap [a, b]$, and $f'(y) \geq 0$ for all $y \in (x, x + \delta) \cap [a, b]$, then *f* is a local minimum point.
- ▶ If $x \in [a, b]$ is such that $f'(y) \ge 0$ for all $y \in (x \delta, x) \cap [a, b]$, and $f'(y) \le 0$ for all $y \in (x, x + \delta) \cap [a, b]$, then *f* is a local maximum point.
- ▶ If $x \in (a, b)$ is a local extremum point, then f'(x) = 0.

The analogous statements, with reversed inequalities, holds for local minimum points.

Note: The condition f'(x) = 0 (for an inner point) is only necessary, not sufficient. For sufficient criteria, we need higher derivatives.

Theorem 4. Assume that $f : [a, b] \to \mathbb{R}$ is 2k times differentiable, for some $k \in \mathbb{N}$. Let $a < x_0 < y$ be such that

$$f'(x_0) = f''(x_0) = \ldots = f^{(2k-1)}(x_0) = 0$$
.

▶ If $f^{(2k)}(x_0) < 0$, then *f* has a local maximum at x_0 .

▶ If $f^{(2k)}(x_0) > 0$, then *f* has a local minimum at x_0 .

If f^(2k)(x₀) = 0, and f is 2k+1 times differentiable with f^(2k+1)(x₀) ≠ 0, then f has neither a local maximum nor a local minimum at x₀. (x₀ is a saddle point.)

Example: Integer powers

Consider $f(x) = x^n$, with $n \in \mathbb{N}$. Then

$$f'(0) = f''(0) = \dots = f^{(n-1)}(0) = 0$$
, $f^{(n)}(0) = n! > 0$.

Hence

▶ If *n* is even, say n = 2k, then $x_0 = 0$ is a local minimum point.

▶ If *n* is odd, say n = 2k + 1, there is no local extremum at $x_0 = 0$

We are interested in local and global extrema of $f(x) = x^3 - 10x^2 - 7x + 50$ on the interval [-3, 10]. Recalling that

$$f'(x) = 3x^2 - 20x - 7 = (3x + 1)(x - 7), f''(x) = 6x - 20$$

we determine the following possible candidates for local extrema:

- ▶ Left boundary: x = -3. Because of f'(-3) = 80 > 0, x = -3 is a local minimum, with f(-3) = -46.
- First root: x = -1/3. We have f''(-1/3) = -22 < 0, which makes x = -1/3 a local maximum.
- Second root: x = 7. Here f''(7) = 22 > 0, hence x = 7 is a local minimum with f(7) = -146.
- ▶ Right boundary: x = 10. Because of f'(10) = 93 > 0, x = 10 is a local maximum, with f(x) = -20.

Comparing local extrema, we find that

▶ $x_{\min} = 7$ is a global minimum point in [-3, 10].

▶ $x_{\text{max}} = -1/3$ is a global maximum point in [-3, 10].

We study the function $f(x) = 2x^2 - \sqrt{x}$ on the interval [0,1]. f is continuous on [0,1] and differentiable on (0,1).

►
$$f'(x) = 4x - \frac{1}{2}x^{-1/2}$$
. Hence

$$f'(x) = 0 \Leftrightarrow 4x = \frac{1}{2}x^{-1/2} \Leftrightarrow x^{3/2} = \frac{1}{8} = \left(\frac{1}{2}\right)^3$$
,

hence f'(x) = 0 only for $x_0 = \frac{1}{4}$.

- ► $f''(x) = 4 + \frac{1}{4}x^{-3/2} > 0$, for all $x \in (0, 1)$. In particular, f''(1/4) > 0, which makes 1/4 a local minimum point.
- For x < 1/4, we have 4x < 1, and $x^{-1/2} > 1/2$. Hence f'(x) < 0, and f is strictly decreasing on [0, 1/4].
- Similarly, f'(x) > 0 for x > 1/4, and f is strictly increasing.
- In particular, 0 is a local maximum point, and 1 is a local minimum point.

Conclusion: *f* strictly decreases on [0, 1/4], and strictly increases on [1/4, 1]. The boundaries are local maximum point, 1/4 is the unique local minimum point, which is therefore global.

f(1)=1 is the maximum of f on $[0,1], \mbox{ and } f(1/4)=-0.375$ the minimum.

We want to prove the inequality

$$\sin(x) \ge \frac{2x}{\pi}$$

for all $x \in [0, \pi/4]$. For this purpose we let $f(x) = \sin(x) - \frac{2x}{\pi}$. We then need to show that $f(x) \ge 0$ for all $x \in [0, \pi/4]$. We make the following observations:

$$\blacktriangleright f(0) = 0.$$

► $f'(x) = \cos(x) - \frac{2}{\pi}$. cos is decreasing on $[0, \pi/4]$, hence

$$f'(x) \ge f'(\pi/4) = \cos(\pi/4) - \frac{2}{\pi} \Longrightarrow 0.0705 > 0$$

► Hence *f* increases on $[0, \pi/4]$, in particular $f(x) \ge f(0) = 0$.

Definition. A function $f : [a, b] \to \mathbb{R}$ is called convex if for all $x, y \in [a, b]$ and all $0 < \lambda < 1$:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$
.

f is called concave if -f is convex.

Note: As λ runs through (0,1), the points $(\lambda x + (1 - \lambda)y, \lambda f(x) + (1 - \lambda)f(y))$ run through all points on the secant between x and y. Thus, convexity means that the secant between two points on the graph is above (or on) the graph.

Graphically, convexity means that the graph of f curves upwards.

Graphically: The function $f : [a, b] \rightarrow \mathbb{R}$ is convex iff for all x, y, the secant between x and y is above the graph of f:

Theorem 5. Let $f : [a, b] \to \mathbb{R}$ be differentiable. Then f is convex iff f' is increasing. In particular, if f is twice differentiable, f is convex iff for all $x \in (a, b)$, $f''(x) \ge 0$.

Example: The function $f(x) = x^k$ (with $k \in \mathbb{N}$) is convex on \mathbb{R} iff $k \leq 1$, or if k is even:

• If
$$k \leq 1$$
, then $f''(x) = 0 \geq 0$.

▶ If k is even, then $f''(x) = k(k-1)x^{k-2} \ge 0$, because k-2 is even.

▶ If k is odd, then $f''(x) \le 0$ for $x \le 0$, hence f is concave on $(-\infty, 0]$, and $f''(x) \ge 0$ for $x \ge 0$ implies that f is convex on $[0, \infty)$.

Definition. Let $f : [a, b] \to \mathbb{R}$ be a differentiable function. $x_0 \in (a, b)$ is called inflection point if it is a local extremum of f'.

Remarks:

- ► At inflection points, *f* changes between convexity and concavity.
- Inflection points are determined from higher derivatives of f by applying Theorems 3 and 4 to f'. In particular, all inflection points are roots of the second derivative.

Consider $f(x) = x^3 - 10x^2 - 7x + 50$. Candidates for inflection points are the roots of f''. Here we have

$$f'(x) = 3x^2 - 20x - 7$$
, $f''(x) = 6x - 20$, $f'''(x) = 6 > 0$

Hence $x_0 = \frac{10}{3}$ is an inflection point. *f* is concave on $(-\infty, 10/3]$, and convex on $[10/3, \infty)$.

We want to prove the inequality

$$\sin(x) \ge \frac{2x}{\pi}$$

for all $x \in [0, \pi/2]$. For this purpose we let $f(x) = \sin(x) - \frac{2x}{\pi}$. We want to show $f \ge 0$ on $[0, \pi/2]$.

Noting that $f''(x) = -\sin(x) \le 0$, for all $x \in [0, \pi/2]$, we conclude that f is concave on $[0, \pi/2]$.

In particular, the secant between $0, \pi/2$ is below the graph of f. But

$$f(0) = 0 = f\left(\frac{\pi}{2}\right)$$

shows that the secant through $0, \pi/2$ is on the *x*-axis, hence $f(x) \ge 0$ for all $x \in [0, \pi/2]$.

Convergence to ∞

Definition. Let $f : (a, b) \to \mathbb{R}$, and $x_0 \in \mathbb{R}$. Then $\lim_{x \to x_0} f(x) = \infty$ if

- ▶ There exists a sequence $(x_n)_{n \in \mathbb{N}} \subset (a, b)$ with $x_0 = \lim_{n \to \infty} x_n$
- For every sequence $(x_n)_{n \in \mathbb{N}} \subset (a, b)$ with $x_0 = \lim_{n \to \infty} x_n$,

$$\lim_{n \to \infty} f(x_n) = \infty \; .$$

Example: $f(x) = \frac{1}{x}$, defined on (0, 1), fulfills $\lim_{x\to 0} f(x) = \infty$

Theorem 6. Let $f, g : [a, b] \to \mathbb{R}$ be differentiable functions, and $x_0 \in [a, b]$. Assume that either

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0 \text{ or } \lim_{x \to x_0} |f(x)| = \lim_{x \to x_0} |g(x)| = \infty .$$

If there exists $y \in \mathbb{R}$ such that

$$y = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

then

$$y = \lim_{x \to x_0} \frac{f(x)}{g(x)}$$

Consider f(x) = sin(x)/x, for x ≠ 0.
Both denominator and enumerator converge to 0 as x → 0. Hence, taking derivatives of both,

$$\lim_{x \to x_0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{\cos(x)}{1} = 1 \; .$$

► Consider $g(x) = \frac{\cos(x)-1}{x^2}$, for $x \neq 0$. Both denominator and enumerator converge to 0 as $x \to 0$. Taking derivatives of both gives $\frac{\sin(x)}{x}$, which we know to converge. Hence

$$\lim_{x \to 0} \frac{\cos(x) - 1}{x^2} = \lim_{x \to 0} \frac{-\sin(x)}{2x} = -\frac{1}{2}$$

Note that we obtained this result by a repeated application of L'Hospital's theorem.

- Properties of curves: Monotonicity, local and global extrema, convexity
- Criteria based on derivatives
- A systematic analysis of functions is based on
 - ▷ Computation of derivatives.
 - Computation of roots, signs of derivatives on
 - ▷ Interpretation of signs and roots: Roots of f' correspond to extrema, roots of f'' to inflection points. The sign of f' corresponds to monotonicity, the sign of f'' to convexity.
- L'Hopital's theorem for the computation of limits.