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Motivation 1

Consider the function f (x) = 2x2 −
√

x on the interval [0, 1].

f is continuous on [0, π], hence we know that there exist xmax and
xmin ∈ [0, π] such that

f (xmax) = max{f (x) : 0 ≤ x ≤ π} , f(xmin) = min({f (x) : 0 ≤ x ≤ π} .

How do we find xmax, xmin? How do we determine monotonicity of f?
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Monotonicity and the first derivative 2

Theorem 1.
Let f : [a, b] → R be continuous, and differentiable on (a, b).

I f is increasing on [a, b] iff f ′(x) ≥ 0, for all x ∈ (a, b).

I f is strictly increasing on [a, b] if f ′(x) > 0, for all x ∈ (a, b).

I f is decreasing on [a, b] iff f ′(x) ≤ 0, for all x ∈ (a, b).

I f is strictly decreasing on [a, b] if f ′(x) < 0, for all x ∈ (a, b).

(Partial) Proof: Assume that x, y ∈ (a, b) with x < y. By the mean
value theorem,

f (y)− f (x)

y − x
= f ′(z) ,

for a suitable z between x and y. Since y > x, this equation implies
that f (y)− f (x) ≥ 0 iff f ′(z) ≥ 0.
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Determining monotonicity intervals of a function 3

Let f be continuously differentiable on (a, b), and suppose that f ′ has
only finitely many roots in (a, b). Then the monotonicity behaviour of
f is determined as follows:

I Compute f ′.

I Compute all roots x0, . . . , xk of f ′ in (a, b).

I In each interval (xi, xi+1), determine the sign of f ′ by evaluating
f ′(ci), for suitable ci ∈ (xi, xi+1).

I On [xi, xi+1], f is strictly increasing, if f ′(ci) > 0; otherwise f is
strictly decreasing.
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An example 4

Consider f (x) = x3 − 10x2 − 7x + 50
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An example 5

Then f ′(x) = 3x2 − 20x− 7 = (3x + 1)(x− 7)
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An example 6

Hence, f ′ has roots −1/3 and 7
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An example 7

f (blue) increases wherever f ′ (red) is positive. Hence:

I f ′(x) > 0 for x ∈ (−∞,−1/3) and x ∈ (7,∞) implies: f is strictly
increasing on (−∞,−1/3] and on [7,∞).

I f ′(x) < 0 in (−1/3, 7) implies: f is strictly decreasing on [−1/3, 7].
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Extreme values 8

Definition: Let f : [a, b] → R, and x0 ∈ [a, b].

I x0 is called local minimum point if for a suitable δ > 0 and all
x ∈ (b− δ, b + δ) ∩ [a, b], f (x0) ≤ f (x)

I x0 is called local maximum point if for a suitable δ > 0 and all
x ∈ (b− δ, b + δ) ∩ [a, b], f (x0) ≥ f (x)

I x0 is called global minimum point of f on [a, b] if for all x ∈ [a, b],
f (x0) ≤ f (x).

I x0 is called global maximum point of f on [a, b] if for all x ∈ [a, b],
f (x0) ≥ f (x).

I The local (or global) minimum and maximum points are called
local (or global) extrema.

Note: Global extrema are local extrema as well.
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Illustration: Extreme values 9

The function f (x) = x3−10x2−7x+50 has two local maximum and two
local minimum points in the interval [−3, 10] (which will be determined
later).
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Extreme values and monotonicity 10

Theorem 2
Let f : [a, b] → R, and x ∈ [a, b].

I Suppose that f is decreasing in (x − δ, x] ∩ [a, b], and increasing
in [x, x + δ), for some δ > 0. Then x is a local minimum point.

I Suppose that f is increasing in (x − δ, x] ∩ [a, b], and decreasing
in [x, x + δ), for some δ > 0. Then x is a local maximum point.

Informally:

I If f increases to the left of x and decreases to the right of x, then
x is a local maximum point.

I For the boundary points a, b, only one-sided behaviour must be
considered.
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Extreme values and the first derivative 11

Theorem 3.
Let f : [a, b] → R be continuous, and differentiable on (a, b).

I If x ∈ [a, b] is such that f ′(y) ≤ 0 for all y ∈ (x − δ, x) ∩ [a, b], and
f ′(y) ≥ 0 for all y ∈ (x, x + δ) ∩ [a, b], then f is a local minimum
point.

I If x ∈ [a, b] is such that f ′(y) ≥ 0 for all y ∈ (x − δ, x) ∩ [a, b], and
f ′(y) ≤ 0 for all y ∈ (x, x + δ) ∩ [a, b], then f is a local maximum
point.

I If x ∈ (a, b) is a local extremum point, then f ′(x) = 0.

The analogous statements, with reversed inequalities, holds for local
minimum points.
Note: The condition f ′(x) = 0 (for an inner point) is only necessary,
not sufficient. For sufficient criteria, we need higher derivatives.
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Extreme values and higher derivatives 12

Theorem 4. Assume that f : [a, b] → R is 2k times differentiable, for
some k ∈ N. Let a < x0 < y be such that

f ′(x0) = f ′′(x0) = . . . = f (2k−1)(x0) = 0 .

I If f (2k)(x0) < 0, then f has a local maximum at x0.

I If f (2k)(x0) > 0, then f has a local minimum at x0.

I If f (2k)(x0) = 0, and f is 2k+1 times differentiable with f (2k+1)(x0) 6=
0, then f has neither a local maximum nor a local minimum at x0.
(x0 is a saddle point.)
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Example: Integer powers 13

Consider f (x) = xn, with n ∈ N. Then

f ′(0) = f ′′(0) = . . . = f (n−1)(0) = 0 , f (n)(0) = n! > 0 .

Hence

I If n is even, say n = 2k, then x0 = 0 is a local minimum point.

I If n is odd, say n = 2k + 1, there is no local extremum at x0 = 0
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Example: Determining local and global extrema 14

We are interested in local and global extrema of f (x) = x3 − 10x2 −
7x + 50 on the interval [−3, 10]. Recalling that

f ′(x) = 3x2 − 20x− 7 = (3x + 1)(x− 7) , f ′′(x) = 6x− 20

we determine the following possible candidates for local extrema:

I Left boundary: x = −3. Because of f ′(−3) = 80 > 0, x = −3 is a
local minimum, with f (−3) = −46.

I First root: x = −1/3. We have f ′′(−1/3) = −22 < 0, which makes
x = −1/3 a local maximum.

I Second root: x = 7. Here f ′′(7) = 22 > 0, hence x = 7 is a local
minimum with f (7) = −146.

I Right boundary: x = 10. Because of f ′(10) = 93 > 0, x = 10 is a
local maximum, with f (x) = −20.
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Determining global extrema 15

Comparing local extrema, we find that

I xmin = 7 is a global minimum point in [−3, 10].

I xmax = −1/3 is a global maximum point in [−3, 10].
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Back to the initial example 16

We study the function f (x) = 2x2 −
√

x on the interval [0, 1]. f is
continuous on [0, 1] and differentiable on (0, 1).
I f ′(x) = 4x− 1

2x
−1/2. Hence

f ′(x) = 0 ⇔ 4x =
1

2
x−1/2 ⇔ x3/2 =

1

8
=

(
1

2

)3

,

hence f ′(x) = 0 only for x0 = 1
4.

I f ′′(x) = 4 + 1
4x
−3/2 > 0, for all x ∈ (0, 1). In particular, f ′′(1/4) > 0,

which makes 1/4 a local minimum point.

I For x < 1/4, we have 4x < 1, and x−1/2 > 1/2. Hence f ′(x) < 0,
and f is strictly decreasing on [0, 1/4].

I Similarly, f ′(x) > 0 for x > 1/4, and f is strictly increasing.

I In particular, 0 is a local maximum point, and 1 is a local minimum
point.
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Back to the initial example 17

Conclusion: f strictly decreases on [0, 1/4], and strictly increases on
[1/4, 1]. The boundaries are local maximum point, 1/4 is the unique
local minimum point, which is therefore global.
f (1) = 1 is the maximum of f on [0, 1], and f (1/4) = −0.375 the
minimum.
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Application: Deriving inequalities 18

We want to prove the inequality

sin(x) ≥ 2x

π

for all x ∈ [0, π/4]. For this purpose we let f (x) = sin(x)− 2x
π . We then

need to show that f (x) ≥ 0 for all x ∈ [0, π/4]. We make the following
observations:

I f (0) = 0.

I f ′(x) = cos(x)− 2
π .

cos is decreasing on [0, π/4], hence

f ′(x) ≥ f ′(π/4) = cos(π/4)− 2

π
=≈ 0.0705 > 0

I Hence f increases on [0, π/4], in particular f (x) ≥ f (0) = 0.
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Convexity 19

Definition. A function f : [a, b] → R is called convex if for all x, y ∈ [a, b]

and all 0 < λ < 1:

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y) .

f is called concave if −f is convex.

Note: As λ runs through (0, 1), the points (λx + (1− λ)y, λf (x) + (1−
λ)f (y)) run through all points on the secant between x and y.
Thus, convexity means that the secant between two points on the
graph is above (or on) the graph.

Graphically, convexity means that the graph of f curves upwards.
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Illustration: Convexity 20

Graphically: The function f : [a, b] → R is convex iff for all x, y, the
secant between x and y is above the graph of f :
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Convexity and the second derivative 21

Theorem 5. Let f : [a, b] → R be differentiable. Then f is convex iff
f ′ is increasing.
In particular, if f is twice differentiable, f is convex iff for all x ∈ (a, b),
f ′′(x) ≥ 0.

Example: The function f (x) = xk (with k ∈ N) is convex on R iff k ≤ 1,
or if k is even:

I If k ≤ 1, then f ′′(x) = 0 ≥ 0.

I If k is even, then f ′′(x) = k(k − 1)xk−2 ≥ 0, because k − 2 is even.

I If k is odd, then f ′′(x) ≤ 0 for x ≤ 0, hence f is concave on
(−∞, 0], and f ′′(x) ≥ 0 for x ≥ 0 implies that f is convex on [0,∞).
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Inflection points 22

Definition. Let f : [a, b] → R be a differentiable function. x0 ∈ (a, b) is
called inflection point if it is a local extremum of f ′.

Remarks:

I At inflection points, f changes between convexity and concavity.

I Inflection points are determined from higher derivatives of f by
applying Theorems 3 and 4 to f ′. In particular, all inflection points
are roots of the second derivative.
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Example: Determining an inflection point 23

Consider f (x) = x3 − 10x2 − 7x + 50. Candidates for inflection points
are the roots of f ′′. Here we have

f ′(x) = 3x2 − 20x− 7 , f ′′(x) = 6x− 20 , f ′′′(x) = 6 > 0 .

Hence x0 = 10
3 is an inflection point.

f is concave on (−∞, 10/3], and convex on [10/3,∞).
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Application: Inequalities from convexity 24

We want to prove the inequality

sin(x) ≥ 2x

π

for all x ∈ [0, π/2]. For this purpose we let f (x) = sin(x)− 2x
π . We want

to show f ≥ 0 on [0, π/2].

Noting that f ′′(x) = − sin(x) ≤ 0, for all x ∈ [0, π/2], we conclude that
f is concave on [0, π/2].

In particular, the secant between 0, π/2 is below the graph of f . But

f (0) = 0 = f
(π

2

)
shows that the secant through 0, π/2 is on the x-axis, hence f (x) ≥ 0

for all x ∈ [0, π/2].
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Convergence to ∞ 25

Definition. Let f : (a, b) → R, and x0 ∈ R. Then limx→x0 f (x) = ∞ if
I There exists a sequence (xn)n∈N ⊂ (a, b) with x0 = limn→∞ xn

I For every sequence (xn)n∈N ⊂ (a, b) with x0 = limn→∞ xn,

lim
n→∞

f (xn) = ∞ .

Example: f (x) = 1
x, defined on (0, 1), fulfills limx→0 f (x) = ∞
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L’Hospital’s theorem 26

Theorem 6. Let f, g : [a, b] → R be differentiable functions, and x0 ∈
[a, b]. Assume that either

lim
x→x0

f (x) = lim
x→x0

g(x) = 0 or lim
x→x0

|f (x)| = lim
x→x0

|g(x)| = ∞ .

If there exists y ∈ R such that

y = lim
x→x0

f ′(x)

g′(x)

then
y = lim

x→x0

f (x)

g(x)
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Sample applications of L’Hospital’s theorem 27

I Consider f (x) = sin(x)
x , for x 6= 0.

Both denominator and enumerator converge to 0 as x → 0. Hence,
taking derivatives of both,

lim
x→x0

sin(x)

x
= lim

x→0

cos(x)

1
= 1 .

I Consider g(x) = cos(x)−1
x2 , for x 6= 0.

Both denominator and enumerator converge to 0 as x → 0. Taking
derivatives of both gives sin(x)

x , which we know to converge. Hence

lim
x→0

cos(x)− 1

x2
= lim

x→0

− sin(x)

2x
= −1

2
.

Note that we obtained this result by a repeated application of
L’Hospital’s theorem.
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Summary 28

I Properties of curves: Monotonicity, local and global extrema, con-
vexity

I Criteria based on derivatives

I A systematic analysis of functions is based on

B Computation of derivatives.
B Computation of roots, signs of derivatives on
B Interpretation of signs and roots: Roots of f ′ correspond to

extrema, roots of f ′′ to inflection points. The sign of f ′ corre-
sponds to monotonicity, the sign of f ′′ to convexity.

I L’Hopital’s theorem for the computation of limits.


