Calculus and Linear Algebra for Biomedical Engineering

Week 8: Applications of differential calculus

H. Fihr, Lehrstuhl A fir Mathematik, RWTH Aachen, WS 07



Motivation

Consider the function f(z) = 22 — \/z on the interval [0, 1].
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f is continuous on [0, 7|, hence we know that there exist ., and
rmin € [0, 7] such that

f(rmax) = max{f(z): 0 <z <w}, f(rpn) =min({f(z):0<z<7}.

How do we find z,,.x, zmin ? HOW do we determine monotonicity of f?



Monotonicity and the first derivative

Theorem 1.
Let f : [a,b] — R be continuous, and differentiable on (a, b).

» fisincreasing on |[a, b] iff f/(x) > 0, for all x € (a, b).
» f is strictly increasing on [a, ] if f'(x) > 0, for all x € (a, b).
» f is decreasing on [a, b] iff f'(z) <0, for all z € (a,b).
» f is strictly decreasing on [a, b] if f'(z) < 0, for all z € (a,b).

(Partial) Proof: Assume that z,y € (a,b) with x < y. By the mean
value theorem,
fy) — flz)

=),

for a suitable z between x and y. Since y > z, this equation implies
that f(y) — f(z) > 0iff f'(z) > 0.




Determining monotonicity intervals of a function

Let f be continuously differentiable on (a, b), and suppose that f’ has
only finitely many roots in (a, ). Then the monotonicity behaviour of
f is determined as follows:

» Compute f'.
» Compute all roots x, ...,z of fin (a,b).

» In each interval (z;, x;.1), determine the sign of f’ by evaluating
f'(c;), for suitable ¢; € (z;, x;11).

» On [z;,x,41], f is strictly increasing, if f'(¢;) > 0; otherwise f is
strictly decreasing.



An example

Consider f(z) = 23 — 102? — 7x + 50
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An example

Then f'(z) = 32% — 202 — 7= (3x + 1)(x — 7)
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An example

Hence, f’ has roots —1/3 and 7
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An example

f (blue) increases wherever [’ (red) is positive. Hence:

» f'(x) > 0forx € (—o0,—1/3) and = € (7,00) implies: f is strictly
increasing on (—oo, —1/3] and on [7, c0).

» f(x) <0in(—1/3,7) implies: f is strictly decreasing on [—1/3,7].
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Extreme values

Definition: Let f : [a,b] — R, and x € [a, b].

» z( is called local minimum point if for a suitable § > 0 and all
re(b—0,0+6)Nla,bl, flxg) < f(x)

» 1, is called local maximum point if for a suitable 6 > 0 and all
re(b—06,b+6)N][a,b], f(xg) > f(x)

» 1 is called global minimum point of f on [a, b] if for all x € [a, b,
f(zo) < flz).

» 1 is called global maximum point of f on |a,b] if for all z € [a, b,
f(zo) = f(z).

» The local (or global) minimum and maximum points are called
local (or global) extrema.

Note: Global extrema are local extrema as well.



lllustration: Extreme values

The function f(z) = 3—102*—7x+50 has two local maximum and two
local minimum points in the interval [—3, 10] (which will be determined
later).

100

501

-501

-1001

-150



Extreme values and monotonicity 10

Theorem 2
Let f:[a,b] — R, and = € [a, b].

» Suppose that f is decreasing in (x — 0, x| N [a, b], and increasing
in [x,x +6), for some § > 0. Then z is a local minimum point.

» Suppose that f is increasing in (z — §, z] N [a, b], and decreasing
in [z,x + ), for some ¢ > 0. Then z is a local maximum point.

Informally:

» If f increases to the left of + and decreases to the right of x, then
x is a local maximum point.

» For the boundary points a, b, only one-sided behaviour must be
considered.



Extreme values and the first derivative 11

Theorem 3.
Let f : [a,b] — R be continuous, and differentiable on (a, b).

» If € [a,b] is such that f/(y) < Oforally € (x — §,z) N [a,b], and
f'ly) > 0forally € (z,z +6)N[a, b, then f is a local minimum
point.

» If = € [a,b] is such that f'(y) > 0 forall y € (z — 6,2) N [a,b], and
f'(y) < 0forally € (z,z +0) N [a,b], then f is a local maximum
point.

» If v € (a,b) is a local extremum point, then f'(z) = 0.

The analogous statements, with reversed inequalities, holds for local
minimum points.

Note: The condition f’(xz) = 0 (for an inner point) is only necessary,
not sufficient. For sufficient criteria, we need higher derivatives.



Extreme values and higher derivatives 12

Theorem 4. Assume that f : [a,b] — R is 2k times differentiable, for
some k € N. Let a < 2y < y be such that

fl(zo) = f'(xo) = ... = fH V(zg) = 0.
» If f@R)(zy) < 0, then f has a local maximum at .
» If fCR)(zy) > 0, then f has a local minimum at x,.

» If fH)(xy) =0, and f is 2k+1 times differentiable with £+ () #
0, then f has neither a local maximum nor a local minimum at z.
(xo is a saddle point.)



Example: Integer powers 13

Consider f(x) = 2", with n € N. Then
f0)=f"(0)=...= f700) =0, f7(0)=nl>0.

Hence
» If n is even, say n = 2k, then zy = 0 is a local minimum point.
» If nis odd, say n = 2k + 1, there is no local extremum at zy = 0

10 30

207

8

101

o

10

-207

0 X X -30



Example: Determining local and global extrema 14

We are interested in local and global extrema of f(z) = 2° — 102* —
7z + 50 on the interval [—3, 10]. Recalling that

fllx)=32*-200 — 7= Bz +1)(x—7), f'(x) = 62 — 20
we determine the following possible candidates for local extrema:

» Left boundary: x = —3. Because of f/(—3) =80 > 0,z = —3is a
local minimum, with f(—3) = —46.

» First root: = = —1/3. We have f"(—1/3) = —22 < 0, which makes
x = —1/3 a local maximum.

» Second root: = = 7. Here f"(7) = 22 > 0, hence x = 7 is a local
minimum with f(7) = —146.

» Right boundary: x = 10. Because of f/(10) =93 > 0,z = 10is a
local maximum, with f(x) = —20.



Determining global extrema

Comparing local extrema, we find that
> i = 7 1S a global minimum point in [—3, 10].

> rn.x = —1/3is a global maximum point in [—3, 10].
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Back to the initial example 16

We study the function f(z) = 22* — \/z on the interval [0,1]. f is
continuous on [0, 1] and differentiable on (0, 1).

> f(z) =4z — 1z~ 1% Hence

f/(fU> =0&4x = 5;1:_1/2 o 32 = gz <_> |

hence f'(xz) = 0 only for z; = 1.

> f(z) =4+ 12732 >0, forall x € (0,1). In particular, f”(1/4) > 0,
which makes 1/4 a local minimum point.

» For 2 < 1/4, we have 4z < 1, and 272 > 1/2. Hence f'(z) < 0,
and f is strictly decreasing on [0, 1/4].

» Similarly, f'(x) > 0forx > 1/4, and f is strictly increasing.

» In particular, 0 is a local maximum point, and 1 is a local minimum
point.



Back to the initial example 17

Conclusion: f strictly decreases on [0, 1/4], and strictly increases on
[1/4,1]. The boundaries are local maximum point, 1/4 is the unique
local minimum point, which is therefore global.

f(1) = 1 is the maximum of f on [0,1], and f(1/4) = —0.375 the
minimum.
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Application: Deriving inequalities 18

We want to prove the inequality

2
sin(z) > =
7T

for all = € [0, /4]. For this purpose we let f(z) = sin(z) — 2. We then
need to show that f(x) > 0 for all x € [0, 7/4]. We make the following
observations:

» f(0) =0.
> f(z) = cos(z) — 2.
cos is decreasing on [0, 7/4], hence

fl(x) > f(m/4) = cos(m/4) — ERN 0.0705 > 0

/[

» Hence f increases on [0, 7/4], in particular f(z) > f(0) = 0.



Convexity 19

Definition. A function f : [a,b] — R s called convexifforall x,y € |a, 0]
andall 0 < \ < 1:

fOz+(1=Ny) <Af(x)+(1=Nf(y) .
f is called concave if —f is convex.
Note: As A runs through (0, 1), the points (Azx + (1 — XNy, Af(z) + (1 —
A) f(y)) run through all points on the secant between z and y.

Thus, convexity means that the secant between two points on the
graph is above (or on) the graph.

Graphically, convexity means that the graph of f curves upwards.



lllustration: Convexity 20

Graphically: The function f : [a,b] — R is convex iff for all z,y, the
secant between x and y is above the graph of f:
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Convexity and the second derivative 21

Theorem 5. Let f : |a,b] — R be differentiable. Then f is convex iff
f’is increasing.
In particular, if f is twice differentiable, f is convex iff for all x € (a, b),

f(x) = 0.

Example: The function f(x) = 2* (with £ € N) is convex on R iff £ < 1,
or if k£ is even:

» If £ <1, then f"(x) =0>0.
» If k is even, then f"(x) = k(k — 1)2*~2 > 0, because k — 2 is even.

» If k£ is odd, then f"(x) < 0 for x < 0, hence f is concave on
(—o0,0], and f"(x) > 0 for z > 0 implies that f is convex on [0, o).



Inflection points 22

Definition. Let f : |a,b] — R be a differentiable function. xj € (a,b) is
called inflection point if it is a local extremum of f.

Remarks:
» At inflection points, f changes between convexity and concavity.

» Inflection points are determined from higher derivatives of f by
applying Theorems 3 and 4 to f’. In particular, all inflection points
are roots of the second derivative.



Example: Determining an inflection point 23

Consider f(x) = 2° — 102*> — 7z + 50. Candidates for inflection points
are the roots of /. Here we have

fl(x)=32"=20x -7, f'(x)=6x—20, f"(x)=6>0.

Hence z, = ¥ is an inflection point.
f is concave on (—o0, 10/3], and convex on [10/3, o).
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Application: Inequalities from convexity 24

We want to prove the inequality

2T
1 >
sin(x) > —

for all = € [0, 7/2]. For this purpose we let f(z) = sin(z) — 2£. We want
to show f > 0 on [0, 7/2].

Noting that f”(x) = —sin(z) < 0, for all z € [0, 7/2], we conclude that
f is concave on [0, 7 /2].

In particular, the secant between 0, 7 /2 is below the graph of f. But
T
fy=0=7(3)
shows that the secant through 0, 7 /2 is on the z-axis, hence f(x) > 0
forall x € [0, 7/2].



Convergence to oo 25

Definition. Let f : (a,b) — R, and z, € R. Then lim,_,,, f(z) = oo if
» There exists a sequence (z,),en C (a,b) with 2y = lim,, . z,,
» For every sequence (z,,).en C (a,b) wWith zy = lim,, o x5,

lim f(x,) =0c0.

n—oo

Example: f(z) = 1, defined on (0, 1), fuffills lim,_ f(z) = oo
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'Hospital’s theorem 26

Theorem 6. Let f, g : [a,b] — R be differentiable functions, and z, €
a, b]. Assume that either

lim f(z) = lim g(z) =0o0r lim |f(z)] = lim |g(z)| = oo .

T—T( T—T( T—x( T—T(

If there exists y € R such that

then



Sample applications of LHospital’s theorem 27

» Consider f(z) = 22 for 2 £ 0.
Both denominator and enumerator converge to 0 as x — 0. Hence,
taking derivatives of both,

sin(x) cos(x)

lim = lim =1.

r—xy X x—0 1
» Consider g(z) = “=9W=L for z £ 0.
Both denominator and enumerator converge to 0 as z — 0. Taking
derivatives of both gives ®22) which we know to converge. Hence

i cos(z) — 1 i sin(z) _ _1 |
x—0 .552 x—0 2x 2

Note that we obtained this result by a repeated application of
L’Hospital’s theorem.




Summary 28

» Properties of curves: Monotonicity, local and global extrema, con-
vexity

» Criteria based on derivatives

» A systematic analysis of functions is based on
> Computation of derivatives.
> Computation of roots, signs of derivatives on

> Interpretation of signs and roots: Roots of f’ correspond to
extrema, roots of f” to inflection points. The sign of f’ corre-
sponds to monotonicity, the sign of f” to convexity.

» L'Hopital’s theorem for the computation of limits.



