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Calculus and Linear Algebra for Biomedical Engineering

Week 9: Power series: The exponential
function, trigonometric functions
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Motivation 1

For arbitrary functions f , the Taylor polynomial

Tn,0(x) =

n∑
k=0

f (k)

k!
xk

is only assumed to be an accurate approximation of f (x) for x ≈ 0.
The reasoning is that the remainder term

Rn,0(x) =
f (n+1)(z)

(n + 1)!
xn+1

with suitable z between 0 and x, is small because x is small (and xn+1

is even smaller).
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Motivation 2

However, the Taylor polynomial will also provide a good approxima-
tion if x is not too big, and instead,

f (n+1)(z)

(n + 1)!
≈ 0 .

I.e., if the derivative does not grow too fast, the Taylor approximation
is accurate on larger intervals.

Thus, at least for certain functions f , summing over more terms of
the Taylor series should approximate f on larger sets.
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Second motivation 3

For arbitrary x, y ∈ R, with x > 0, what is xy?

Using standard operations (products, roots), we can evaluate xy only
for rational numbers y: If y = n

m, then

xy = (xn)1/m = m
√

xn .

For irrational y, something else is needed.

Solution: For base e = 2.7182..., we define ey via a power series

ey =

∞∑
n=0

yn

n!
.

For other bases x, we define xy from this function and the natural
logarithm.



J

I

Power series 4

Definition. An expression of the sort

f (x) =

∞∑
k=0

ak(x− x0)
k

is called a power series in x.

Remarks

I If
∑∞

k=0 |ak|rk < ∞, for some r > 0, then f (x) is well-defined for all
x with |x−x0| < r. Moreover, f is infinitely differentiable in (−r, r).

I If a function f has a power series, this series is the Taylor series
of f around x0.
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Taylor series 5

Definition. Let f : D → R denote an infinitely differentiable function,
with x0 ∈ D. Then its Taylor series at x0 is defined as the series

T∞,x0(x) =

∞∑
k=0

f (k)(x0)

k!
(x− x0)

k ,

Note: The Taylor series need not converge. Even when it does,
T∞,x0(x) need not coincide with f (x). However, for certain functions
f , one finds that

Rn,x0(x) → 0 , as n →∞
and thus T∞,x0(x) = f (x).
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Radius of convergence 6

Theorem. Consider a power series

(∗) f (x) =

∞∑
k=0

ak(x− x0)
k .

Suppose that one of the two cases holds:

I c = limn→∞
n
√
|an| exists.

In this case, let r = 1/c. If c = 0, let r = ∞.

I r = limn→∞
|an|
|an+1|

exists.

Then (∗) converges if |x− x0| < r, and diverges if |x− x0| > r.
If both limits exist, the two parts give the same value for r.

The number r in the Theorem is called radius of convergence. The
interval (x0 − r, x0 + r) is called interval of convergence.
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Example: Cosine function 7

Let f (x) = cos(x). Then, using cos′ = sin and sin′ = cos, we can
compute all higher derivatives as

f (n) =

{
(−1)k+1 sin(x) n = 2k + 1

(−1)k+1 cos(x) n = 2k

Hence, plugging sin(0) = 0, cos(0) = 1 into the Taylor polynomial, we
obtain

Tn,0(x) =

n∑
k=0

(−1)kx2k

(2k)!
= 1− x2

2!
+

x4

4!
− x6

6!
+ . . .
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Residual of the cosine function 8

The nth residual of the cosine function is estimated as

|Rn,0(x)| =

∣∣∣∣cos(n+1)(z)

(n + 1)!
xn+1

∣∣∣∣ ≤ ∣∣∣∣ xn+1

(n + 1)!

∣∣∣∣
We want to find a range for x such that the Taylor approximation for
f (x) is accurate up to precision 0.1. Taking the n + 1st root,∣∣∣∣ xn+1

(n + 1)!

∣∣∣∣ < 0.1 ⇔ |x| <
(

(n + 1)!

10

)(n+1)−1

This last inequality is fulfilled for instance,

I if n = 4 and |x| < 1.64;

I or if n = 12 and |x| < 4.74;

I or if n = 18 and |x| < 7.02.
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Approximation of the cosine function 9

Blue: cos(x), Red: T4,0(x) = 1− x2

2! + x4

4!

Accurate up to 0.1 for |x| < 1.64
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Approximation of the cosine function 10

Blue: cos(x), Red: T12,0(x) = 1− x2

2! + x4

4! −
x6

6! + x8

8! −
x10

10! + x12

12!

Accurate up to 0.1 for |x| < 4.74
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Approximation of the cosine function 11

Blue: cos(x), Red: T18,0(x) = 1− x2

2! + x4

4! + ... + x16

16! −
x18

18!

Accurate up to 0.1 for |x| < 7.02
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Power series for cos, sin 12

We compute the radius of convergence for the coefficients given by

an =

 0 n = 2k + 1

(−1)k

(2k)!
n = 2k

Now Stirling’s formula allows to show that

n
√
|an| → 0 as n →∞

and thus r = ∞. The same argument works for sin, hence:

Theorem. For all x ∈ R

cos(x) =

∞∑
k=0

(−1)kx2k

(2k)!
, sin(x) =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
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The exponential function 13

Definition. The function exp : R → R defined by the series

exp(x) =

∞∑
k=0

xk

k!

is called exponential function.
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Properties of the exponential function 14

Theorem.

1. exp : R → R is continuous and strictly positive.

2. exp translates addition to multiplication:
For all x, y ∈ R, exp(x + y) = exp(x) exp(y).

3. exp is differentiable, with exp′ = exp. In particular, exp is strictly
increasing.

4. limx→−∞ exp(x) = 0 and limx→∞ exp(x) = ∞.

5. exp : R → (0,∞) is bijective.
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exp and ex 15

I An alternative formula for exp is

exp(x) = lim
n→∞

(
1 +

x

n

)1/n

.

I In particular, exp(1) = e (Euler’s constant).

I Using multiplicativity of exp, one can show for n ∈ Z, m ∈ N that

exp(n/m) = en/m

Hence exp(x) = ex for rational x.

I We then define for arbitrary x ∈ R:

ex = exp(x) .
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The natural logarithm 16

Recall: exp : R → (0,∞) is bijective. The inverse function is denoted
as ln : (0,∞) → R, the natural logarithm.
Blue: exp, red: ln
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Properties of ln 17

Theorem.

1. ln : (0,∞) → R is continuous, bijective, and strictly increasing.

2. ln translates multiplication to addition:
For all x, y ∈ (0,∞), ln(xy) = ln(x) + ln(y).

3. ln is differentiable on (0,∞), with

ln′(x) =
1

x
.

4. limx→0 ln(x) = −∞ and limx→∞ exp(x) = ∞.

5. ln : (0,∞) → R is bijective.
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Arbitrary exponentials 18

We define xy for arbitrary x > 0 and y ∈ R.

xy = eln(x)y .

Then f (x) = xy fulfills

1. f : R → (0,∞) is bijective.

2. f translates addition to multiplication:
For all s, t ∈ R, xs+t = xsxt.

3. f is differentiable, with f ′ = ln(x)f .

4. Multiplication of exponents becomes exponentiation:
For all s, t ∈ R, xst = (xs)t.
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Arbitrary logarithms 19

The function f (y) = xy has an inverse function, called base x loga-
rithm, denoted by logx. The function is computed as

logx(y) =
ln(y)

ln(x)

Often used bases, besides e, are

I 10 ( common logarithm = log = log10)

I 2 (dyadic logarithm = log2)

Derivatives of logarithms:

d logx

dy
(y0) =

1

ln(x)y0
.
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Application: Radioactive decay 20

If a quantity A of a radioactive substance is given at time t = 0, the
remaining amount at time t > 0 is described by

f (t) = Ae−λt .

Here λ > 0 is the decay rate of the substance. λ is usually de-
termined by measuring the half-life of the substance, i.e., the time
t1/2 > 0 for which

f (t1/2) =
f (0)

2
=

A

2
.

λ can be computed from t1/2, and vice versa, because:

2 =
f (0)

f (t1/2)
=

A

Ae−λt1/2
= eλt1/2 ⇔ λt1/2 = ln(2) .
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Complex exponential and Euler’s formula 21

Observation: The series

exp(z) =

∞∑
k=0

zk

k!

converges for every z ∈ C. The result is a function

exp : C → C

with many interesting properties, in particular,

exp(z + w) = exp(z) exp(w) .

Sorting the real and imaginary parts of exp(iϕ) results in Euler’s for-
mula for α ∈ R

eiα = cos(α) + i sin(α) .
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An application of Euler’s formula 22

Addition theorems: Given α, β ∈ R, we compute ei(α+β) in two differ-
ent ways:

(∗) ei(α+β) = cos(α + β) + i sin(α + β) ,

or, using ei(α+β) = eiαeiβ,

ei(α+β) = (cos(α) + i sin(α))(cos(β) + i sin(β))

= cos(α) cos(β)− sin(α) sin(β)

+ i(cos(α) sin(β) + sin(α) cos(β)) .

A comparison of the last expression with the right-hand side of (∗)
yields the addition theorems for sin, cos:

cos(α + β) = cos(α) cos(β)− sin(α) sin(β)

sin(α + β) = cos(α) sin(β) + sin(α) cos(β)
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Summary 23

I Power series and radius of convergence

I Power series representation of sin, cos

I The exponential function exp and its properties

I Natural logarithms, arbitrary powers and logarithms

I Derivatives of powers and logarithms

I Rules for powers and logarithms

I Complex exponential and Euler’s formula


