Fourierreihen und Funktionentheorie

Vortrag zum Seminar Fourieranalysis, 27.11.2007

Corinna Schaaf

Bisher haben wir Fourierreihen, die auf dem Torus $\mathbb{T} = \{x \in \mathbb{R} : -\pi \le x < \pi\}$ definiert sind, betrachtet.

Es ist jedoch auch möglich, Fourierreihen auf der Kreislinie $\partial D = \{\exp(it), \ t \in \mathbb{T}\}$ der Kreisscheibe $D = \{z \in \mathbb{C} : |z| < 1\}$ zu betrachten.

Im folgenden Vortrag sollen Fourier-Reihen in diesem Kontext behandelt werden.

§1 Der Poisson-Kern

In diesem Abschnitt wird der Poisson-Kern definiert und einige seiner grundlegenden Eigenschaften gezeigt. Der Poisson-Kern wird für den Beweis der zentralen Aussage dieses Vortrags benötigt.

(1.1) Definition (Poisson-Kern)

Sei $\theta \in \mathbb{T}$, $0 \le r < 1$. Dann definieren wir die Funktion

$$P_r(\theta) := \sum_{n=-\infty}^{\infty} r^{|n|} \cdot \exp(in\theta).$$

Diese Funktion nennen wir Poisson-Kern.

(1.2) Lemma

Sei P_r der Poisson-Kern wie in Definition (1.1), $\theta \in T$ und $0 \le r < 1$. Dann gilt:

$$P_r(\theta) = \frac{1 - r^2}{1 - 2r \cdot \cos(\theta) + r^2}$$
\$

Beweis

$$\begin{split} P_r(\theta) &= \sum_{n=-\infty}^{\infty} r^{|n|} \exp(in\theta) \\ &= \sum_{n=-\infty}^{-1} r^{|n|} \exp(in\theta) + 1 + \sum_{n=1}^{\infty} r^n \exp(in\theta) \\ &= \sum_{n=1}^{\infty} r^n \exp(-in\theta) + 1 + \sum_{n=1}^{\infty} r^n \exp(in\theta) \\ &= \frac{r \exp(-i\theta)}{1 - r \exp(-i\theta)} + 1 + \frac{r \exp(i\theta)}{1 - r \exp(i\theta)} \qquad \text{(geom. Reihe)} \\ &= \frac{(r \exp(-i\theta) - r^2) + (1 - r \exp(-i\theta)) - r \exp(i\theta + r^2) + (r \exp(i\theta) - r^2)}{1 - r \exp(-i\theta) - r \exp(i\theta) + r^2} \\ &= \frac{1 - r^2}{1 - 2r \cos(\theta) + r^2} \end{split}$$

Der Poisson-Kern hat drei wichtige Eigenschaften:

(1.3) Lemma

Gegeben sei der Poisson-Kern wie oben. Dann gilt:

a)
$$P_r(\theta) \ge 0$$
 für alle $\theta \in \mathbb{T}$, $0 \le r < 1$

b)
$$P_r(\theta) \xrightarrow{glm.} 0 \text{ für } r \uparrow 1, \ \theta \in \mathbb{T} \setminus [-\delta, \delta]$$

c)
$$\frac{1}{2\pi} \cdot \int_{\mathbb{T}} P_r(\theta) d\theta = 1$$
 für $0 \le r < 1$.

 \Diamond

Beweis

a)

$$P_{r}(\theta) = \frac{1 - r^{2}}{1 - 2r\cos(\theta) + r^{2}}$$
1) $1 - r^{2} \ge 0$, $f \text{ür } 0 \le r < 1$
2) $1 - 2r\cos(\theta) + r^{2}$

$$= \cos^{2}(\theta) + \sin^{2}(\theta) - 2r\cos(\theta) + r^{2}$$

$$= (\cos(\theta) - r)^{2} + \sin^{2}(\theta)$$

$$\ge 0$$
, $f \text{ür } 0 \le r < 1$

$$\Rightarrow P_r(\theta) \geq 0$$

b)

1. Fall
$$\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}] \setminus [-\delta, \delta]$$
:

$$1 - 2r\cos(\theta) + r^{2} = (1 - r\cos(\theta))^{2} + r^{2}\sin^{2}(\theta)$$

$$\geq (1 - r\cos(\theta))^{2}$$

$$\geq (1 - |r\cos(\theta)|)^{2}$$

$$> (1 - |\cos(\theta)|)^{2}$$

$$0 \leq P_{r}(\theta)$$
a)

$$\leq P_r(\theta)$$
 a)
$$= \frac{1 - r^2}{1 - 2r\cos(\theta) + r^2}$$
 Lemma 1.2)
$$< \frac{1 - r^2}{(1 - |\cos(\theta)|)^2}$$

$$\leq \frac{1 - r^2}{(1 - |\cos(\delta)|)^2}$$

$$\stackrel{glm.}{\longrightarrow} 0 \quad \text{für r} \uparrow 1$$

2. Fall
$$\theta \in [-\pi, \pi] \setminus [-\frac{\pi}{2}, \frac{\pi}{2}]$$
:
$$1 - 2r\cos(\theta) + r^2 > (1 - r\cos(\theta))^2$$

$$0 \leq P_r(\theta)$$

$$= \frac{1 - r^2}{1 - 2r\cos(\theta) + r^2}$$

$$< \frac{1 - r^2}{(1 - \cos(\theta))^2}$$

$$\leq \frac{1 - r^2}{1 - \cos(\theta)}$$

$$\leq \frac{1 - r^2}{1}$$

$$\stackrel{glm.}{\longrightarrow} 0 \quad \text{für r} \uparrow 1$$

Aus dem 1. und 2. Fall folgt die Behauptung.

c)

$$\frac{1}{2\pi} \int_{\mathbb{T}} P_r(y) dy = \frac{1}{(g=1)} \int_{\mathbb{T}} g(t-y) P_r(y) dy$$

$$= \sum_{-\infty}^{\infty} \left(\frac{1}{2\pi} \int_{\mathbb{T}} g(x) exp(-inx) dx \right) r^{|n|} exp(int)$$

$$= \sum_{-\infty}^{\infty} \left(\frac{1}{2\pi} \int_{\mathbb{T}} exp(-inx) dx \right) r^{|n|} exp(int)$$

$$= 0, falls \ n \neq 0$$

Um ein 'Springen' zwischen den Beweisen zu verhindern, wird hier schon die Vorüberlegung aus (2.2) als gültig angenommen. Summe und Integral können hier vertauscht werden, da $\sum\limits_{n=-\infty}^{\infty}g(x)r^{|n|}exp(-in(x-t))$ gerade nach der Vorüberlegung in (2.2) gleichmäßig konvergiert und das Integral über ein abgeschlossenes Intervall, \mathbb{T} , gebildet wird.

§2 Funktionen auf dem Einheitskreis

Die folgenden Sätze dienen der Vorbereitung der weiteren Vorträge. Dabei ist besonders der Satz (2.3) wichtig für den Vortrag zum Thema "Lösung des Dirichlet-Problems mittels Fourier-Reihen".

(2.1) Satz

Sei $f : \partial D \to \mathbb{C}$ stetig. Setze $g(\theta) = f(exp(i\theta))$ und $a_n = \hat{g}(n)$, dann gilt:

a)
$$\sum\limits_{n=-\infty}^{\infty}a_n\cdot r^{|n|}\cdot exp(in\theta)$$
 konvergiert gleichmäßig für alle $0\leq r<1.$

b)
$$\sum_{n=-\infty}^{\infty} a_n \cdot r^{|n|} \cdot exp(in\theta) \to f(exp(i\theta)) = g(\theta) \text{ für alle } \theta \text{ für } r \uparrow 1.$$

Dieser Satz sagt aus, dass $f(exp(i\theta))$ der gleichmäßige Grenzwert für $r\uparrow 1$ von einer auf D definierten Funktion $\sum\limits_{n=-\infty}^{\infty}a_n\cdot r^{|n|}\cdot exp(in\theta)$ ist.

Um diesen Satz zu beweisen, genügt es, folgendes, einfacheres Ergebnis zu beweisen:

(2.2) Satz

Wenn $g : \mathbb{T} \to \mathbb{C}$ stetig ist, dann gilt:

a)
$$\sum_{n=-\infty}^{\infty} \hat{g}(n) \cdot r^{|n|} \cdot exp(int)$$
 konvergiert gleichmäßig für alle t für alle $0 \le r < 1$.

b)
$$\sum_{n=-\infty}^{\infty} \hat{g}(n) \cdot r^{|n|} \cdot exp(int) \xrightarrow{glm.} g(t)$$
 für alle t für $r \uparrow 1$.

Beweis

Zunächst beweisen wir die Aussage des Satzes (2.1). Dazu nehmen wir an, dass Satz (2.2) gilt:

Setze $g(\theta) = f(exp(i\theta))$ und $a_n = \hat{g}(n)$ (also gerade wie in Satz (2.1) gegeben) in die Reihen aus (2.2) ein. Man erhält sofort (2.1).

Es bleibt also nun noch zu zeigen, dass der Satz (2.2) gültig ist.

Beweis

a) Da g stetig auf $\mathbb{T}=[-\pi,\pi)$ ist und beschränkt durch $|g(t)|\leq M$ gilt:

$$|\hat{g}(n)| = \left| \frac{1}{2\pi} \int_{\mathbb{T}} g(t) \cdot exp(-int) dt \right|$$

$$\leq \frac{1}{2\pi} \int_{\mathbb{T}}^{\mathbb{T}} |g(t) \cdot exp(-int)| dt$$

$$\leq \frac{1}{2\pi} M \int_{\mathbb{T}}^{\mathbb{T}} 1 dt$$

$$= M$$

und damit

$$\begin{aligned} & \left| \hat{g}(n)r^{|n|}exp(int) \right| \leq Mr^{|n|}. \\ \Rightarrow & \sum_{n=-\infty}^{\infty} \left| \hat{g}(n)r^{|n|}exp(int) \right| \leq \sum_{n=-\infty}^{\infty} Mr^{|n|}. \end{aligned}$$

Wir betrachten nun die Reihe $\sum_{n=-\infty}^{\infty} Mr^{|n|}$:

$$\sum_{n=-\infty}^{\infty} Mr^{|n|} = M \cdot \left(\sum_{n=0}^{\infty} r^n + \sum_{n=0}^{\infty} r^n - 1\right)$$

$$= M \cdot \left(\frac{1}{1-r} + \frac{1}{1-r} - 1\right) \quad \text{(geometrische Reihe)}$$

$$= M \cdot \frac{1+r}{1-r}$$

$$< \infty, \qquad da \ r < 1$$

Somit konvegiert $\sum_{n=-\infty}^{\infty} \hat{g}(n)r^{|n|}exp(int)$ nach dem Weierstraßschen Majoranten-Kriterium (vgl. Krieg, Analysis II, I, 1,10).

Wir setzen
$$\sum_{n=-\infty}^{\infty} \hat{g}(n) r^{|n|} exp(int) = P_r(g,t)$$

Zu zeigen ist nun noch, dass das $P_r(g,t)$ gegen g(t) konvergiert. Um dies zu zeigen, machen wir zunächst folgende Vorüberlegung:

Da g stetig auf \mathbb{T} und beschränkt durch $|g(x)| \leq M \ \forall x \in \mathbb{T}$ ist, gilt für $N(2) \geq N(1) \geq 0$ und $P(2) \geq P(1) \geq 0$:

$$\begin{split} & \sum_{n=-P(2)}^{N(2)} g(x)r^{|n|} exp(-i \ n \ (x-t)) - \sum_{n=-P(1)}^{N(1)} g(x)r^{|n|} exp(-i \ n \ (x-t)) \\ & = \left| \sum_{n=-P(2)}^{-P(1)-1} g(x)r^{|n|} exp(-i \ n \ (x-t)) + \sum_{n=N(1)+1}^{N(2)} g(x)r^{|n|} exp(-i \ n \ (x-t)) \right| \\ & \leq \sum_{n=-P(2)}^{-P(1)-1} \left| g(x)r^{|n|} exp(-i \ n \ (x-t)) \right| + \sum_{n=N(1)+1}^{N(2)} \left| g(x)r^{|n|} exp(-i \ n \ (x-t)) \right| \\ & = \sum_{n=-P(2)}^{-P(1)-1} \left| g(x) \right| \left| r^{|n|} \right| \left| exp(-i \ n \ (x-t)) \right| + \sum_{n=N(1)+1}^{N(2)} \left| g(x) \right| \left| r^{|n|} \right| \left| exp(-i \ n \ (x-t)) \right| \\ & \leq \sum_{n=-P(2)}^{-P(1)-1} Mr^{|n|} + \sum_{n=N(1)+1}^{N(2)} Mr^{|n|} \\ & \leq M \cdot \left(\sum_{n=-P(2)}^{-P(1)-1} r^{|n|} + \sum_{n=N(1)+1}^{N(2)} r^{|n|} \right) \\ & \leq M \cdot \left(\sum_{n=-P(2)}^{-P(2)} r^{n} + \sum_{n=N(1)+1}^{N(2)} r^{n} - \sum_{n=0}^{N(1)} r^{n} \right) \\ & = M \cdot \left(\sum_{n=0}^{-P(2)} r^{n} - \sum_{n=0}^{-P(1)-1} r^{n} - \frac{1-r^{N(1)+1}}{1-r} - \frac{1-r^{N(1)+1}}{1-r} \right) \\ & = M \cdot \left(\frac{1-r^{P(2)+1}}{1-r} - \frac{1-r^{P(1)+1}}{1-r} + \frac{1-r^{N(2)+1}}{1-r} - \frac{1-r^{N(1)+1}}{1-r} \right) \\ & = M \cdot \frac{r}{1-r} \cdot \left((1-r^{P(2)}) - (1-r^{P(1)}) + (1-r^{N(2)}) - (1-r^{N(1)}) \right) \\ & \leq M \cdot \frac{r}{1-r} \cdot \left(r^{P(1)} + r^{N(1)} \right) \longrightarrow 0 \\ & \text{für } N(1), P(1) \longrightarrow \infty, \ da \ r<1 \ \text{ist.} \end{aligned}$$

Wir wissen also, dass $\sum\limits_{n=-\infty}^{\infty}g(x)r^{|n|}exp(-in(x-t))$ gleichmäßig konvergiert nach dem Cauchy'schen Konvergenzkriterium.

Mit Hilfe dieses Ergebnisses können wir nun $P_r(g,t)$ umschreiben:

$$\begin{split} P_r(g,t) &= \sum_{n=-\infty}^{\infty} \hat{g}(n) r^{|n|} exp(int) \\ &= \sum_{n=-\infty}^{\infty} \left(\frac{1}{2\pi} \int_{\mathbb{T}} g(x) exp(-inx) dx \right) r^{|n|} exp(int) \quad \hat{g}(n) \text{ eingesetzt} \\ &= \sum_{n=-\infty}^{\infty} \frac{1}{2\pi} \int_{\mathbb{T}} g(x) r^{|n|} exp(in(t-x)) dx \\ &= \frac{1}{2\pi} \int_{\mathbb{T}} \sum_{n=-\infty}^{\infty} g(x) r^{|n|} exp(in(t-x)) dx \qquad \qquad \sum \text{ glm. konv., } \int \text{ über endl. Intervall} \\ &= \frac{1}{2\pi} \int_{\mathbb{T}} g(x) \sum_{n=-\infty}^{\infty} r^{|n|} exp(in(t-x)) dx \\ &= \frac{1}{2\pi} \int_{\mathbb{T}} g(x) P_r(t-x) dx \qquad \qquad \text{Def. Poisson-Kern} \\ &= \frac{1}{2\pi} \int_{\mathbb{T}} g(t-y) P_r(y) dy \qquad \qquad \text{Subst. t-x=y} \end{split}$$

Des Weiteren wissen wir noch:

1. g ist Riemann-integrierbar auf dem abgeschlossenen Intervall $[-\pi, \pi]$, und somit beschränkt:

$$|g(y)| \le M$$
 für ein $M \in \mathbb{R}$ und für alle $y \in \mathbb{T}$

2. Nach Voraussetzung ist g stetig in $y \in \mathbb{T}$. Nach Definition der Stetigkeit muss also für alle $\epsilon > 0$ (mindestens) ein $\delta(y, \epsilon)$ existiert mit

$$|f(y)-f(t)|\leq \tfrac{\epsilon}{2} \text{ für alle } y\in \mathbb{T} \text{ mit } |y-t|\leq \delta.$$

3. Wir wissen aus Lemma (1.3 a), dass

$$\int_{\theta \in [-\delta, \delta]} |P_r(\theta)| \, d\theta = \int_{\theta \in [-\delta, \delta]} P_r(\theta) \, d\theta \le \int_{\mathbb{T}} P_r(\theta) \, d\theta$$

4. Aus der gleichmäßigen Konvergenz des Poisson-Kerns außerhalb des Intervalls $[-\delta,\delta]$ folgt bei einem festen δ , dass gilt:

$$|P_r(\theta)| \leq \frac{\epsilon}{4M}$$
 für alle $\theta \notin [-\delta, \delta]$ und $r \uparrow 1$.

Nun zeigen wir die Behauptung (2.2) b):

$$|P_{r}(g,t) - g(t)| = \left| \frac{1}{2\pi} \int_{\mathbb{T}} g(t-y) P_{r}(y) dy - g(t) \cdot 1 \right|$$

$$= \left| \frac{1}{2\pi} \int_{\mathbb{T}} g(t-y) P_{r}(y) dy - g(t) \cdot \frac{1}{2\pi} \int_{\mathbb{T}} P_{r}(y) dy \right| \quad (1.3) \text{ c}$$

$$= \left| \frac{1}{2\pi} \int_{\mathbb{T}} g(t-y) P_{r}(y) dy - \frac{1}{2\pi} \int_{\mathbb{T}} g(t) P_{r}(y) dy \right|$$

$$= \left| \frac{1}{2\pi} \int_{\mathbb{T}} (g(t-y) - g(t)) P_{r}(y) dy \right|$$

$$\underset{\Delta - U \cap g \mid g}{=} \left| \frac{1}{2\pi} \int_{y \in [-\delta, \delta]} (g(t-y) - g(t)) P_{r}(y) dy \right|$$

$$+ \left| \frac{1}{2\pi} \int_{y \notin [-\delta, \delta]} (g(t-y) - g(t)) P_{r}(y) dy \right|$$

Somit ist gezeigt, dass $\sum_{n=-\infty}^{\infty} \hat{g}(n) \cdot r^{|n|} \cdot exp(int)$ für alle t für $r \uparrow 1$ gleichmäßig gegen g(t) konvergiert.

 $\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \ \ \text{ für alle n} \geq N(\epsilon).$

Im folgenden Satz werden drei wichtige Eigenschaften einer Funktion f mit $f: \partial D \to \mathbb{C}$ gezeigt.

(2.3) Satz

Sei $f:\partial D\to\mathbb{C}$ stetig. Setze $g(\theta)=f(exp(i\theta))$ und $a_n=\hat{g}(n)$ (also gerade wie in (2.1)), dann gilt:

a)
$$f_1(z) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cdot z^n$$
 und $f_2(z) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_{-n} \cdot z^n$

sind wohldefinierte analytische Funktionen auf $D := \{z \in \mathbb{C} : |z| < 1\}.$

b) Wenn wir

$$F(z) = f_1(z) + f_2(z^*)$$
 für $z \in D$
 $F(z) = f(z)$ für $z \in \partial D$

setzen, dann ist F eine wohldefinierte, stetige Funktion auf der abgeschlossenen Kreisscheibe $\bar{D}=D\cup\partial D=\{z\in\mathbb{C}:|z|\leq1\}.$

c) Ist f reellwertig, so ist auch F reellwertig.

Beweis

a) Aus Analysis I (IV, 4.4) ist bekannt:

Ist $w \neq 0 \in \mathbb{C}$, so dass die Folge $(a_n w^n)_{n \geq 0}$ beschränkt ist, dann konvergiert die Reihe $\sum\limits_{n=1}^{\infty} n^l a_n z^n$, $1 \in \mathbb{Z}$ für alle $z \in \mathbb{C}$ mit |z| < |w|

Setzen wir nun w = 1 und l = 0, dann gilt mit:

$$|a_n| = |\hat{g}(n)| \le M$$
, dass $\sum_{n=1}^{\infty} n^0 a_n z^n = \sum_{n=1}^{\infty} a_n z^n$ absolut konvergiert für $|z| < 1$.

Mit Cauchy-Hadamard können die Konvergenzradien von f_1 und f_2 berechnet werden:

$$R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}$$

$$= \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|\hat{g}(n)|}}$$

$$\geq \frac{1}{\limsup_{n \to \infty} \sqrt[n]{M}}$$

$$= 1$$

Daraus folgt, dass die beiden Funktionen $f_1(z)$, $f_2(z)$ einen Konvergenzradius von mindestens 1 haben. Da eine Potenzreihe innerhalb ihres Konvergenzradius analytisch ist, ist die Behauptung gezeigt.

b) F ist stetig für alle z mit |z| < 1. Es bleibt zu zeigen: F ist stetig in z_0 mit $z_0 \in \partial D$, also mit $|z_0| = 1$:

$$F(rexp(i\theta)) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n r^n exp(in\theta) + \frac{a_0}{2} + \sum_{n=1}^{\infty} a_{-n} r^n exp(-in\theta)$$

$$= \sum_{n=-\infty}^{\infty} a_n r^{|n|} exp(in\theta) \xrightarrow{glm} f(exp(i\theta))$$

$$= F(exp(i\theta)), \text{ für } r \uparrow 1$$

Es bleibt noch der Stetigkeitsbeweis mit dem ϵ , δ -Kriterium:

Für ein $\epsilon > 0$ existiert ein $\delta_1(\epsilon) > 0$ und ein $\delta_2(\epsilon) > 0$, so dass gilt:

$$|f(exp(i\theta)) - f(exp(i\theta_0))| < \frac{\epsilon}{2} \text{ für } |\theta - \theta_0| < \delta_1$$

und

$$|F(r \exp(i\theta)) - F(\exp(i\theta))| < \frac{\epsilon}{2} \text{ für } 1 - \delta_2 < r \le 1$$

Dann gilt für $|\theta - \theta_0| < \delta_1$ und $1 - \delta_2 < r \le 1$:

$$\epsilon = \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$\geq |F(r \exp(i\theta) - F(\exp(i\theta))| + |f(\exp(i\theta)) - f(\exp(i\theta_0))|$$

$$\geq \sum_{\Delta - \text{Unglg.}} |F(r \exp(i\theta)) - F(\exp(i\theta)) + |f(\exp(i\theta)) - f(\exp(i\theta_0))|$$

$$= |F(r \exp(i\theta)) - f(\exp(i\theta_0))|$$

$$= |F(r \exp(i\theta)) - F(\exp(i\theta_0))|$$

$$\Rightarrow \text{F\"{u}r } z_0 = exp(i\theta_0), \ |z_0 - w| < \frac{\min\left\{\delta_1(\epsilon), \delta_2(\epsilon), \frac{1}{2}\right\}}{2} \ \text{und} \ |w| \leq 1 \ \text{gilt:}$$

$$|F(z) - F(z_0)| < \epsilon.$$

Also ist F stetig auf $\bar{D} = \{z : |z| \le 1\}.$

c) Es gilt:

$$\hat{g}(-n) = \frac{1}{2\pi} \int_{\mathbb{T}} g(t) \exp(int) dt = \left(\frac{1}{2\pi} \int_{\mathbb{T}} g(t) \exp(-int) dt\right)^* = \hat{g}(n)^*$$

Nun betrachten wir:

$$F(z) = f_{1}(z) + f_{2}(z^{*})$$

$$= \frac{a_{0}}{2} + \sum_{n=1}^{\infty} a_{n}z^{n} + \frac{a_{0}}{2} + \sum_{n=1}^{\infty} a_{-n}(z^{*})^{n}$$

$$= a_{0} + \sum_{n=1}^{\infty} a_{n}z^{n} + \sum_{n=1}^{\infty} a_{-n}(z^{n})^{*}$$

$$= a_{0} + \sum_{n=1}^{\infty} \hat{g}(n)z^{n} + \sum_{n=1}^{\infty} \hat{g}(-n)(z^{n})^{*}$$

$$= a_{0} + \sum_{n=1}^{\infty} \hat{g}(n)z^{n} + \sum_{n=1}^{\infty} \hat{g}(n)^{*}(z^{n})^{*}$$

$$= a_{0} + \sum_{n=1}^{\infty} \hat{g}(n)z^{n} + \sum_{n=1}^{\infty} (\hat{g}(n)(z^{n}))^{*}$$

$$= a_{0} + \sum_{n=1}^{\infty} \underbrace{[\hat{g}(n)z^{n} + (\hat{g}(n)(z^{n}))^{*}]}_{\in \mathbb{R}}$$

$$\Rightarrow F(z) \in \mathbb{R}$$