

Hartmut Führ fuehr@matha.rwth-aachen.de

Lehrstuhl A für Mathematik, RWTH Aachen

October 4, 2008

Propositions	Sets	Number domains	Comparing real numbers.	Powers	Equations
Overview	/				

Mathematical propositions

Propositions are assertions about (usually mathematical) entities, which can be meaningfully assigned a truth value, "true" or "false". Examples of propositions:

- Yesterday it rained in Aachen.
- Equations: For all real numbers a, b: $(a + b)^2 = a^2 + 2ab + b^2$. (This is a true proposition.)
- Inequalities: For all real numbers a, b: $(a + b)^2 > a^2 + b^2$. (This is a false proposition.)

Sentences that are not propositions:

- Today it is going to rain. (Truth values cannot be assigned to prognoses.)
- I hope it does not rain again.
- The number π is more important than the number $\sqrt{2}$. ("Importance" is not a meaningful property of numbers.)
- Does π^2 equal 1? (This is not an assertion.)

Equations

Operations on mathematical propositions

Mathematical propositions can be combined to yield new statements. Suppose that A, B are mathematical propositions.

- Negation: $\neg A$ is true precisely when A is false.
- Conjunction: $A \wedge B$ (read: "A and B") is true precisely when both A and B are true.
- Disjunction: $A \lor B$ (read: "A or B") is true precisely when at least one of the statements A, B is true.
- Implication: $A \Rightarrow B$ (read "A implies B) is true precisely when the truth of A implies the truth of B. Formally, $A \Rightarrow B$ is true precisely when $(\neg A) \lor B$ is true.
- Equivalence: $A \Leftrightarrow B$ (read "A is equivalent to B") is true precisely when both $A \Rightarrow B$ and $B \Rightarrow A$ are true.

Propositions	Sets	Number domains	Comparing real numbers.	Powers	Equations
Example	S				

The implication

There are $2 \in in my right pocket \Rightarrow I$ have at least $2 \in on me$ is true.

Conversely, the implication
 I have at least 2 € on me ⇒ There are 2 € in my right pocket is false.

Note: The validity of the implications need not depend on the truth of the isolated statements.

A set is a collection of well-defined, distinct objects. The objects that are contained in a set M are called the elements of M. How to write down a set:

- Listing all the elements of the set: $M = \{a, b, c, d\}$ is the set containing the elements a, b, c and d.
- Describing the elements: $M = \{x : A(x) \text{ is true }\}$, where A(x) is a proposition depending on x.

Examples:

- $M = \{2, 4, 6, 8\}$
- $N = \{x : x \text{ is an even natural number with } x < 10\}$

If A and B are sets, A is called a subset of B if every element of A is contained in B. We then write $A \subset B$, or $B \supset A$.

 $A \subset B \Leftrightarrow (\text{ for all } x \in A : x \in B)$

Two sets are equal if they have the same elements. Hence

$$A = B \Leftrightarrow (A \subset B \land B \subset A)$$

Example:

 $\{2, 4, 6, 8\} = \{x : x \text{ is an even natural number with } x < 10\}$

Equations

Operations on sets: Intersection and union

Given sets A and B,

Sets

• the union of A and B is the set of all elements contained in either one:

$$A \cup B = \{x : x \in A \lor x \in B\}$$
;

• the intersection of A and B is the set of all elements contained in both:

$$A \cap B = \{x : x \in A \land x \in B\}$$

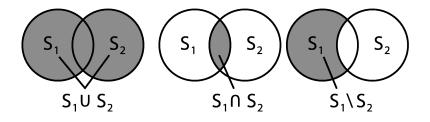
• the difference of A and B is the set of all elements contained in A, but not in B:

$$A \setminus B = \{x : x \in A \land x \notin B\}$$

Equations

Visualization of set operations

From left to right: Union, intersection, difference



Equations

The most important sets: Number domains

- The empty set: The set containing no elements is denoted Ø.
- Natural numbers: $\mathbb{N} = \{1, 2, ...\}, \mathbb{N}_0 = \{0, 1, ...\} = \mathbb{N} \cup \{0\}.$
- Integer numbers: $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}.$
- Rational numbers: The set of fractions $\mathbb{Q} = \{ \frac{p}{q} : p, q \in \mathbb{Z}, q > 0 \}.$
- Real numbers: \mathbb{R} = set of all decimal expansions

$$x=n.a_1a_2a_3\ldots$$
 , $n,a_1,\ldots a_n\in \mathbb{N}_0$, $0\leq a_i\leq 9$.

Examples:

- $\frac{1}{4} = 0.25$
- $\frac{1}{7} = 0.142857142857... = 0.\overline{142857}$
- The circumference of a circle with diameter 1 is given by $\pi = 3.1415926...$ (irrational number)

The purpose of number domains

Sets

Depending on the operations one wishes to perform on numbers, there is a hierarchy of number domains:

- Natural numbers: Useful for elementary tasks like counting objects. Sums of natural numbers are natural numbers. Taking differences of natural numbers leads to
- Integers: Integers are natural numbers with a sign. Taking quotients of integers leads to
- Rational numbers: Rational numbers are closed under taking differences and quotients. Computers and calculators use rational numbers. The necessity of taking roots (and other useful operations, like exponentiating) leads to
- Real numbers: Most importantly, real numbers and their properties are the basis of calculus.

Inclusions between number domains

The following chain of inclusions holds:

 $\emptyset \subset \mathbb{N} \subset \mathbb{N}_0 \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$

The first inclusion is true be default: The empty set is contained in every set.

For the last inclusion recall: A real number

 $x=n.a_1a_2a_3\ldots$, $n,a_1,\ldots a_n\in\mathbb{N}_0$, $0\leq a_i\leq 9$.

is rational if and only if its decimal expansion breaks off or is periodic.

Adding and subtracting real numbers

Real numbers can be added and subtracted: For each pair (x, y) of real numbers there are unique numbers $x + y, x - y \in \mathbb{R}$ such that the following axioms:

- Neutral element: For all $x \in \mathbb{R}$: x + 0 = x.
- Associativity: (x + y) + z = x + (y + z). Thus, we can omit brackets in this setting: x + y + z := (x + y) + z.
- Commutativity: x + y = y + x.
- Subtraction and addition are inverse operations:

y - y = 0, and thus x + y - y = x + 0 = x.

Instead of 0 - y one writes -y. Hence x - y = x + (-y). In particular, addition and subtraction commute.

Multiplying and dividing real numbers

Real numbers can be multiplied and divided: For each pair (x, y) of real numbers there are unique numbers $x \cdot y, x/y \in \mathbb{R}$ (with x/yonly defined if $y \neq 0$!) such that the following axioms are fulfilled:

- Multiplication by zero: For all $x \in \mathbb{R}$: $x \cdot 0 = 0$.
- Neutral element: For all $x \in \mathbb{R}$: $x \cdot 1 = x$.
- Associativity: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$. Thus, we can omit brackets in this setting: $xyz = (x \cdot y) \cdot z$.
- Commutativity: $x \cdot y = y \cdot x$.
- Multiplication and division are inverse operations: For $y \in \mathbb{R}$, different from 0, y/y = 1, and thus $(xy)/y = x \cdot 1 = x$.

We y^{-1} instead of 1/y and $\frac{x}{y}$ instead of x/y. Then $\frac{x}{y} = x \cdot y^{-1}$.

Equations

Combining addition and multiplication

For
$$n \in \mathbb{N}_0, x \in \mathbb{R}$$
: $\underbrace{x + x + \ldots + x}_{n \text{ occurrences}} = n \cdot x$

Furthermore, one has distributive rules: For $x, y, z \in \mathbb{R}$,

•
$$x \cdot (y + z) = (xy) + (xz)$$

• $(y + z)/x = (y/x) + (z/x)$, for $x \neq 0$
• $x \cdot (y - z) = (xy) - (xz)$
• $(y - z)/x = (y/x) - (z/x)$, for $x \neq 0$

To avoid cluttered notation, multiplication/division are always assumed to be performed before addition/subtraction. Hence:

$$(xy) + z = xy + z$$
, $x(y + z) = (xy) + (xz) = xy + xz$

Ordering and comparing real numbers

Every real number $x \in \mathbb{R}$ fulfills precisely one of the following:

$$x < 0$$
 , $x = 0$, $x > 0$.

x > 0 is called positive, x < 0 is negative. One writes x < y if x - y < 0. This ordering fulfills the following axioms, for all $x, y, z \in \mathbb{R}$

$$x < y \text{ and } y < z \Rightarrow x < z ,$$

- $2 x < y \Rightarrow x + z < y + z$
- $3 \ x < y \Rightarrow -y < -x$
- z > 0 and $x < y \Rightarrow zx < zy$
- I z < 0 and x < y arrow zx > zy

Alternative ordering: \leq , > etc.

Sets

One defines

 $y > x : \Leftrightarrow x < y$

and

$$x \leq y : \Leftrightarrow (x < y) \lor (x = y)$$
 .

Also, $y \ge x$ is the same as $x \le y$. The rules derived for "<" on the previous slide are easily adapted to ">, \le , \ge ". An equivalence used in many proofs is

$$x = y \Leftrightarrow (x \leq y) \land (y \leq x)$$
.

It is also customary to write chains of inequalities:

$$x < y \leq z \Leftrightarrow (x < y) \land (y \leq z)$$
 .

Propositions	Sets	Number domains	Comparing real numbers.	Powers	Equations
ما من سم + مرا					

Intervals

Definition. For $a, b \in \mathbb{R}$, with a < b, we define • $(a, b) = \{x \in \mathbb{R} : a < x < b\}$ (open interval) • $(a, b] = \{x \in \mathbb{R} : a < x \le b\}$ (half-open interval) • $[a, b) = \{x \in \mathbb{R} : a \le x < b\}$ (half-open interval) • $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$ (closed interval) • $(-\infty, b) = \{x \in \mathbb{R} : x < b\}$ and $(-\infty, b] = \{x \in \mathbb{R} : x \le b\}$ • $(a, \infty) = \{x \in \mathbb{R} : a < x\}$ and $[a, \infty) = \{x \in \mathbb{R} : a \le x\}$

For every $y \in \mathbb{R}$, either $y \geq 0$ or $-y \geq 0$. We let

$$|y| = \left\{egin{array}{ccc} y & ext{for} & y \geq 0 \ -y & ext{for} & y < 0 \end{array}
ight.$$

which is called absolute value or modulus of y. Rules for the absolute value: Let $x, y \in \mathbb{R}$

•
$$|x| \ge 0$$
, and $|x| = 0 \Leftrightarrow x = 0$.

$$\bullet |xy| = |x| |y|.$$

•
$$|x| = |-x|$$
.

•
$$|x+y| \le |x|+|y|$$
.

The last property is known as the triangle inequality. Useful reformulations are

$$||x| - |y|| \le |x + y| \le |x| + |y|$$
.

Powers of real numbers

We next want to make sense of the expression x^y , with $x, y \in \mathbb{R}$. This takes several steps. We start out by considering $y = n \in \mathbb{N}_0$:

Multiplying n times the same number $x \in \mathbb{R}$ gives the nth power of Х

$$\underbrace{x \cdot x \cdot \dots \cdot x}_{n \text{ occurrences}} = x^n \quad .$$

Powers are assumed to be calculated before multiplication: For example, $xy^n + z = (x(y^n)) + z$.

Let $x, y \in \mathbb{R}$ and $m, n \in \mathbb{N}$. a) $x^0 = 1$, for all $x \in \mathbb{R}$. (In particular: $0^0 = 1$.) a) $x^n x^m = x^{n+m}$ b) $x^n y^n = (xy)^n$ c) $(x^n)^m = x^{nm}$

Negative powers: One writes

$$x^{-n} = (x^{-1})^n = 1/(x^n)$$
.

Application: Monotonicity of powers

Squares are positive: For $x \in \mathbb{R}$, $x \neq 0$:

 $x^2 > 0$.

Indeed,

$$\begin{array}{ll} \text{if } x < 0 & \Rightarrow & x \cdot x > 0 \cdot x = 0 \ (\text{ see slide 15, rule 5}) \\ \text{if } x > 0 & \Rightarrow & x \cdot x > 0 \cdot x = 0 \ (\text{ see slide 15, rule 4}) \end{array}$$

Monotonicity of powers: For $n \in \mathbb{N}$ and 0 < x < y,

 $0 < x^n < y^n .$

This rule is obtained by application of the order axioms:

$$0 < x < y \Rightarrow x^2 = x \cdot x < x \cdot y < y \cdot y = y^2$$

and so on. (Mathematically rigourous method: Proof by induction.)

Roots and fractional powers

Let $n \in \mathbb{N}$ and x > 0. Then there is a unique y > 0 such that

$$y^n = x$$
 .

One defines

$$x^{1/n} := y \quad ,$$

and calls y the *n*th root of x. Alternative notation: $\sqrt[n]{x} := x^{1/n}$.

By definition of $x^{1/n}$, one has

$$(x^{1/n})^n = x = x^1 = x^{n/n}$$
.

Hence it makes sense to define x^y , for $y = m/n \in \mathbb{Q}$, by letting

$$x^y = (x^{1/n})^m.$$

Rules for fractional powers

The rules for integer powers carry over to fractional powers: Let $x, y \in \mathbb{R}$ be positive, and $p, q \in \mathbb{Q}$.

•
$$x^0 = 1$$
, for all $x \in \mathbb{R}$. (In particular: $0^0 = 1$.)

$$2 x^p x^q = x^{p+q}.$$

$$x^{p}y^{p} = (xy)^{p}$$

$$(x^p)^q = x^{pq}$$

Note: Do not forget the restriction x > 0! We noted previously for every $y \in \mathbb{R}$, that $y^2 > 0$. Hence the equation $y^2 = -1$ cannot be solved in \mathbb{R} , i.e., there is no real number $y = \sqrt{-1}$ The expression x^y can now be extended to x > 0 and $y \in \mathbb{R}$ arbitrary, using that y can be arbitrarily well be approximated by $y' \in \mathbb{Q}$. (Note: A more detailed explanation already requires notions from calculus.)

The rules for fractional powers carry over to arbitrary powers: Let $x, y \in \mathbb{R}$ be positive, and $s, t \in \mathbb{R}$.

•
$$x^0 = 1$$
, for all $x \in \mathbb{R}$. (In particular: $0^0 = 1$.)

$$2 x^s x^t = x^{s+t}.$$

$$x^s y^s = (xy)^s$$

$$(x^s)^t = x^{st}$$

- Interesting quantities are often given as solutions of equations. Several questions arise: Does a solution exist in a given set? Is it unique?
- These questions are usually answered by determining the set $\mathbb S$ of all solutions.
- Examples:
 - Consider the equation 3 + 2x = 5 2x. This can be easily solved for x, yielding x = 0.5. Hence the set of solutions is S = {0.5}.
 - The equation $(5x)^2 = 25x^2$ is true for every $x \in \mathbb{R}$. Hence we obtain $\mathbb{S} = \mathbb{R}$ as set of all solutions.
 - We know for all $x \in \mathbb{R}$ that $x^2 > 0$. In particular, the equation $x^2 = -1$ has no solution in \mathbb{R} , and $\mathbb{S} = \emptyset$ in this case.

- The equation $x^2 = 2$ has no solutions in \mathbb{Z} . This is easily seen, since $0^2 = 0 \neq 2$, $(\pm 1)^2 = 1 \neq 2$, and $n^2 > 2$ for all $n \in \mathbb{Z}$, |n| > 1.
- It is true (but harder to show) that $x^2 = 2$ has no solution in \mathbb{Q} .
- The equation $x^2 = 2$ has two real solutions, $\mathbb{S} = \{\pm \sqrt{2}\}$. (Note that we defined $\sqrt{2}$ as the positive solution of this equation.)
- More generally, the equation $x^2 + ax + b = 0$, with fixed $a, b \in \mathbb{R}$ has the solutions

$$x_{1,2} = rac{a \pm \sqrt{a^2 - 4b}}{2}$$
 ,

provided that $a^2 - 4b \ge 0$. Hence there exist two solutions in \mathbb{R} if $a^2 - 4b > 0$, one solution if $a^2 - 4b = 0$, and no solutions if $a^2 - 4b < 0$.

One more class of examples: Linear equations

A linear equation has the form ax + b = 0, with $a, b \in \mathbb{R}$ and variable x. Existence and numbers of solutions depend on a and b:

• If $a \neq 0$, we can solve directly for x

$$ax+b=0 \Leftrightarrow ax=-b \Leftrightarrow x=-rac{b}{a}$$
 ,

showing that there exists precisely one solution.

• If a = 0, the equation becomes b = 0. Hence, if b = 0, then $\mathbb{S} = \mathbb{R}$, otherwise $\mathbb{S} = \emptyset$.

- Mathematics generally proceeds by the following steps.
 - Define objects (Propositions, sets, numbers).
 - Define operations on objects (e.g., disjunctions, unions, sums).
 - Fix rules or axioms that the operations must obey.
 - Derive true mathematical statements by applying the axioms.
- Most important object: The number domain ${\mathbb R}$
 - $\bullet\,$ Algebraic operations on $\mathbb R$ and their properties
 - Extensions of the algebraic operations: Powers, roots
 - $\bullet~$ Ordering on $\mathbb R$ and its properties
 - The properties of ${\mathbb R}$ are the basis of calculus.