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Mathematical propositions

Propositions are assertions about (usually mathematical) entities,
which can be meaningfully assigned a truth value, �true� or �false�.
Examples of propositions:

Yesterday it rained in Aachen.

Equations: For all real numbers a, b:
(a + b)2 = a2 + 2ab + b2. (This is a true proposition.)

Inequalities: For all real numbers a, b: (a + b)2 > a2 + b2.
(This is a false proposition.)
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Further examples

Sentences that are not propositions:

Today it is going to rain. (Truth values cannot be assigned to
prognoses.)

I hope it does not rain again.

The number π is more important than the number
√
2.

("Importance" is not a meaningful property of numbers.)

Does π2 equal 1? (This is not an assertion.)
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Operations on mathematical propositions

Mathematical propositions can be combined to yield new
statements. Suppose that A,B are mathematical propositions.

Negation: ¬A is true precisely when A is false.

Conjunction: A ∧ B (read: "A and B") is true precisely when
both A and B are true.

Disjunction: A ∨ B (read: "A or B") is true precisely when at
least one of the statements A, B is true.

Implication: A⇒ B (read "A implies B) is true precisely when
the truth of A implies the truth of B . Formally, A⇒ B is true
precisely when (¬A) ∨ B is true.

Equivalence: A⇔ B (read "A is equivalent to B") is true
precisely when both A⇒ B and B ⇒ A are true.
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Examples

The implication
There are 2 e in my right pocket ⇒ I have at least 2 e on me

is true.

Conversely, the implication
I have at least 2 e on me ⇒ There are 2 e in my right pocket

is false.

Note: The validity of the implications need not depend on the truth
of the isolated statements.
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Sets

A set is a collection of well-de�ned, distinct objects. The objects
that are contained in a set M are called the elements of M.
How to write down a set:

Listing all the elements of the set: M = {a, b, c, d} is the set
containing the elements a, b, c and d .

Describing the elements: M = {x : A(x) is true }, where A(x)
is a proposition depending on x .

Examples:

M = {2, 4, 6, 8}
N = {x : x is an even natural number with x < 10}
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Subsets and inclusion

If A and B are sets, A is called a subset of B if every element of A
is contained in B . We then write A ⊂ B , or B ⊃ A.

A ⊂ B ⇔ ( for all x ∈ A : x ∈ B)

Two sets are equal if they have the same elements. Hence

A = B ⇔ (A ⊂ B ∧ B ⊂ A)

Example:

{2, 4, 6, 8} = {x : x is an even natural number with x < 10}
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Operations on sets: Intersection and union

Given sets A and B ,

the union of A and B is the set of all elements contained in
either one:

A ∪ B = {x : x ∈ A ∨ x ∈ B} ;

the intersection of A and B is the set of all elements contained
in both:

A ∩ B = {x : x ∈ A ∧ x ∈ B} .

the di�erence of A and B is the set of all elements contained
in A, but not in B :

A \ B = {x : x ∈ A ∧ x 6∈ B} .
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Visualization of set operations

From left to right: Union, intersection, di�erence
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The most important sets: Number domains

The empty set: The set containing no elements is denoted ∅.
Natural numbers: N = {1, 2, . . .}, N0 = {0, 1, . . .} = N ∪ {0}.
Integer numbers: Z = {0,±1,±2, . . .}.
Rational numbers: The set of fractions
Q = {p

q
: p, q ∈ Z, q > 0}.

Real numbers: R = set of all decimal expansions

x = n.a1a2a3 . . . , n, a1, . . . an ∈ N0 , 0 ≤ ai ≤ 9 .

Examples:
1
4

= 0.25
1
7

= 0.142857142857... = 0.142857

The circumference of a circle with diameter 1 is given by
π = 3.1415926.... (irrational number)
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The purpose of number domains

Depending on the operations one wishes to perform on numbers,
there is a hierarchy of number domains:

Natural numbers: Useful for elementary tasks like counting
objects. Sums of natural numbers are natural numbers.
Taking di�erences of natural numbers leads to

Integers: Integers are natural numbers with a sign. Taking
quotients of integers leads to

Rational numbers: Rational numbers are closed under taking
di�erences and quotients. Computers and calculators use
rational numbers. The necessity of taking roots (and other
useful operations, like exponentiating) leads to

Real numbers: Most importantly, real numbers and their
properties are the basis of calculus.
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Inclusions between number domains

The following chain of inclusions holds:

∅ ⊂ N ⊂ N0 ⊂ Z ⊂ Q ⊂ R

The �rst inclusion is true be default: The empty set is contained in
every set.
For the last inclusion recall: A real number

x = n.a1a2a3 . . . , n, a1, . . . an ∈ N0 , 0 ≤ ai ≤ 9 .

is rational if and only if its decimal expansion breaks o� or is
periodic.
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Adding and subtracting real numbers

Real numbers can be added and subtracted: For each pair (x , y) of
real numbers there are unique numbers x + y , x − y ∈ R such that
the following axioms:

Neutral element: For all x ∈ R: x + 0 = x .

Associativity: (x + y) + z = x + (y + z).
Thus, we can omit brackets in this setting:
x + y + z := (x + y) + z .

Commutativity: x + y = y + x .

Subtraction and addition are inverse operations:
y − y = 0, and thus x + y − y = x + 0 = x .

Instead of 0− y one writes −y . Hence x − y = x + (−y). In
particular, addition and subtraction commute.
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Multiplying and dividing real numbers

Real numbers can be multiplied and divided:For each pair (x , y) of
real numbers there are unique numbers x · y , x/y ∈ R (with x/y
only de�ned if y 6= 0 !) such that the following axioms are ful�lled:

Multiplication by zero: For all x ∈ R: x · 0 = 0.

Neutral element: For all x ∈ R: x · 1 = x .

Associativity: (x · y) · z = x · (y · z).
Thus, we can omit brackets in this setting: xyz = (x · y) · z .
Commutativity: x · y = y · x .
Multiplication and division are inverse operations:
For y ∈ R, di�erent from 0, y/y = 1, and thus
(xy)/y = x · 1 = x .

We y−1 instead of 1/y and x
y
instead of x/y . Then x

y
= x · y−1.
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Combining addition and multiplication

For n ∈ N0, x ∈ R: x + x + . . . + x︸ ︷︷ ︸
n occurrences

= n · x

Furthermore, one has distributive rules: For x , y , z ∈ R,

x · (y + z) = (xy) + (xz)

(y + z)/x = (y/x) + (z/x), for x 6= 0

x · (y − z) = (xy)− (xz)

(y − z)/x = (y/x)− (z/x), for x 6= 0

To avoid cluttered notation, multiplication/division are always
assumed to be performed before addition/subtraction. Hence:

(xy) + z = xy + z , x(y + z) = (xy) + (xz) = xy + xz
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Ordering and comparing real numbers

Every real number x ∈ R ful�lls precisely one of the following:

x < 0 , x = 0 , x > 0 .

x > 0 is called positive, x < 0 is negative.
One writes x < y if x − y < 0. This ordering ful�lls the following
axioms, for all x , y , z ∈ R

1 x < y and y < z ⇒ x < z .

2 x < y ⇒ x + z < y + z

3 x < y ⇒ −y < −x
4 z > 0 and x < y ⇒ zx<zy

5 z < 0 and x < y ⇒ zx>zy
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Alternative ordering: ≤, > etc.

One de�nes
y > x :⇔ x < y

and
x ≤ y :⇔ (x < y) ∨ (x = y) .

Also, y ≥ x is the same as x ≤ y . The rules derived for �<� on the
previous slide are easily adapted to �>,≤,≥�. An equivalence used
in many proofs is

x = y ⇔ (x ≤ y) ∧ (y ≤ x) .

It is also customary to write chains of inequalities:

x < y ≤ z ⇔ (x < y) ∧ (y ≤ z) .
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Intervals

De�nition.
For a, b ∈ R, with a < b, we de�ne

(a, b) = {x ∈ R : a < x < b} (open interval)

(a, b] = {x ∈ R : a < x ≤ b} (half-open interval)

[a, b) = {x ∈ R : a ≤ x < b} (half-open interval)

[a, b] = {x ∈ R : a ≤ x ≤ b} (closed interval)

(−∞, b) = {x ∈ R : x < b} and (−∞, b] = {x ∈ R : x ≤ b}
(a,∞) = {x ∈ R : a < x} and [a,∞) = {x ∈ R : a ≤ x}
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Absolute value

For every y ∈ R, either y ≥ 0 or −y ≥ 0. We let

|y | =
{

y for y ≥ 0
−y for y < 0

,

which is called absolute value or modulus of y .
Rules for the absolute value: Let x , y ∈ R

|x | ≥ 0, and |x | = 0⇔ x = 0.

|xy | = |x | |y |.
|x | = | − x |.
|x + y | ≤ |x |+ |y |.

The last property is known as the triangle inequality. Useful
reformulations are

| |x | − |y | | ≤ |x + y | ≤ |x |+ |y | .
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Powers of real numbers

We next want to make sense of the expression xy , with x , y ∈ R.
This takes several steps. We start out by considering y = n ∈ N0:

Multiplying n times the same number x ∈ R gives the nth power of
x

x · x · . . . · x︸ ︷︷ ︸
n occurrences

= xn .

Powers are assumed to be calculated before multiplication:
For example, xyn + z = (x(yn)) + z .



Propositions Sets Number domains Comparing real numbers. Powers Equations

Rules for powers

Let x , y ∈ R and m, n ∈ N.

1 x0 = 1, for all x ∈ R. (In particular: 00 = 1.)

2 xnxm = xn+m

3 xnyn = (xy)n

4 (xn)m = xnm

Negative powers: One writes

x−n = (x−1)n = 1/(xn) .



Propositions Sets Number domains Comparing real numbers. Powers Equations

Application: Monotonicity of powers

Squares are positive: For x ∈ R, x 6= 0:

x2 > 0 .

Indeed,

if x < 0 ⇒ x · x > 0 · x = 0 ( see slide 15, rule 5)

if x > 0 ⇒ x · x > 0 · x = 0 ( see slide 15, rule 4)

Monotonicity of powers: For n ∈ N and 0 < x < y ,

0 < xn < yn .

This rule is obtained by application of the order axioms:

0 < x < y ⇒ x2 = x · x < x · y < y · y = y2 ,

and so on. (Mathematically rigourous method: Proof by induction.)
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Roots and fractional powers

Let n ∈ N and x > 0. Then there is a unique y > 0 such that

yn = x .

One de�nes
x1/n := y ,

and calls y the nth root of x . Alternative notation: n

√
x := x1/n.

By de�nition of x1/n, one has

(x1/n)n = x = x1 = xn/n .

Hence it makes sense to de�ne xy , for y = m/n ∈ Q, by letting

xy = (x1/n)m.
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Rules for fractional powers

The rules for integer powers carry over to fractional powers:
Let x , y ∈ R be positive, and p, q ∈ Q.

1 x0 = 1, for all x ∈ R. (In particular: 00 = 1.)

2 xpxq = xp+q.

3 xpyp = (xy)p

4 (xp)q = xpq

Note: Do not forget the restriction x > 0!
We noted previously for every y ∈ R, that y2 > 0.
Hence the equation y2 = −1 cannot be solved in R, i.e., there is no
real number y =

√
−1
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Arbitrary powers

The expression xy can now be extended to x > 0 and y ∈ R
arbitrary, using that y can be arbitrarily well be approximated by
y ′ ∈ Q.
(Note: A more detailed explanation already requires notions from
calculus. )

The rules for fractional powers carry over to arbitrary powers:
Let x , y ∈ R be positive, and s, t ∈ R.

1 x0 = 1, for all x ∈ R. (In particular: 00 = 1.)

2 x sx t = x s+t .

3 x sy s = (xy)s

4 (x s)t = x st



Propositions Sets Number domains Comparing real numbers. Powers Equations

Equations

Interesting quantities are often given as solutions of equations.
Several questions arise: Does a solution exist in a given set? Is it
unique?
These questions are usually answered by determining the set S of
all solutions.
Examples:

Consider the equation 3 + 2x = 5− 2x . This can be easily
solved for x , yielding x = 0.5. Hence the set of solutions is
S = {0.5}.
The equation (5x)2 = 25x2 is true for every x ∈ R. Hence we
obtain S = R as set of all solutions.

We know for all x ∈ R that x2 > 0. In particular, the equation
x2 = −1 has no solution in R, and S = ∅ in this case.
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Further Examples

The equation x2 = 2 has no solutions in Z. This is easily seen,
since 02 = 0 6= 2, (±1)2 = 1 6= 2, and n2 > 2 for all n ∈ Z,
|n| > 1.
It is true (but harder to show) that x2 = 2 has no solution in
Q.
The equation x2 = 2 has two real solutions, S = {±

√
2}.

(Note that we de�ned
√
2 as the positive solution of this

equation.)
More generally, the equation x2 + ax + b = 0, with �xed
a, b ∈ R has the solutions

x1,2 =
a ±

√
a2 − 4b

2
,

provided that a2 − 4b ≥ 0. Hence there exist two solutions in
R if a2 − 4b > 0, one solution if a2 − 4b = 0, and no solutions
if a2 − 4b < 0.
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One more class of examples: Linear equations

A linear equation has the form ax + b = 0, with a, b ∈ R and
variable x . Existence and numbers of solutions depend on a and b:

If a 6= 0, we can solve directly for x

ax + b = 0⇔ ax = −b ⇔ x = −b

a
,

showing that there exists precisely one solution.

If a = 0, the equation becomes b = 0. Hence, if b = 0, then
S = R, otherwise S = ∅.
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Summary

Mathematics generally proceeds by the following steps.

De�ne objects (Propositions, sets, numbers).
De�ne operations on objects (e.g., disjunctions, unions, sums).
Fix rules or axioms that the operations must obey.
Derive true mathematical statements by applying the axioms.

Most important object: The number domain R
Algebraic operations on R and their properties
Extensions of the algebraic operations: Powers, roots
Ordering on R and its properties
The properties of R are the basis of calculus.
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