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Motivation

Recall from last week:

Extensions of number domains (e.g., from N to Z, from Z to

Q, from Q to R) are motivated partly by the desire to extend

operations (e.g., subtraction, division, powers).

A negative real number does not have a square root in R.

De�nition. The set C of complex numbers is de�ned as

C = {(x , y) : x , y ∈ R} .

where (x , y) denotes an ordered pair of real numbers.

Note: Two ordered pairs (a, b) and (x , y) are equal if and only if

a = x and b = y . In particular, (a, b) = (b, a) only if a = b.
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Operations on complex numbers

De�nition. Let (a, b), (x , y) ∈ C.

The sum resp. di�erence is de�ned as

(a, b) + (x , y) = (a + x , b + y) (1)

(a, b)− (x , y) = (a − x , b − y) . (2)

The product is de�ned as

(a, b) · (x , y) = (ax − by , ay + bx) . (3)
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Notations for complex numbers

Pairs are useful for the rigourous de�nition of complex numbers.

For carrying out computations with complex numbers, other

notations are preferred.

We identify (x , 0) ∈ C with x ∈ R.

Note that now, x + y could mean the usual sum of real

numbers, or the result of the addition (x , 0) + (y , 0) in C.

However, the latter is (x + y , 0), which we identify with x + y .

We de�ne the imaginary unit as i := (0, 1) ∈ C. Note i2 = −1.
We can now write arbitrary complex numbers as

z = (x , y) = (x , 0) + (0, y) = x + (0, 1) · y = x + iy .

In the new notation, sum and product become

(a + ib) + (x + iy) = (a + x) + i(b + y) (4)

(a + ib) · (x + iy) = (ax − by) + i(ay + bx) . (5)
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Axioms for sums and products

Theorem. All axioms regarding sums (di�erences) and products in

R carry over to C. In particular, the following properties can be

veri�ed directly.

Addition is commutative and associative.

Multiplication is commutative and associative.

The distributive law relating addition and multiplication holds.

Using the identi�cations from above, speci�cally 1 = (1, 0)
and 0 = (0, 0), we �nd for arbitrary z ∈ C

z = z · 1 = z + 0 , z · 0 = 0 .



De�nition and basic operations Properties of sum and product Geometric interpretation Polar coordinates

Complex conjugate, Real and Imaginary part, Modulus

De�nition. For z = x + iy ∈ C, we introduce the following notions:

Re(z) = x , the real part of z (6)

Im(z) = y , the imaginary part of z (7)

z = x − iy , the complex conjugate of z (8)

|z | =
√
zz =

√
x2 + y2 , the modulus or length of z (9)

Note that x2 + y2 ≥ 0, hence |z | is well-de�ned and positive. |z | is
also called absolute value of z .

Useful formulas:

z = Re(z) + iIm(z) , Re(z) =
z + z

2
, Im(z) =

z − z

2
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Complex division

Theorem. For z = x + iy ∈ C \ {0}, write

z−1 = |z |−2 · z =
x

x2 + y2
− i

y

x2 + y2
.

Then

z · z−1 = z · z

|z |2
=

zz

|z |2
=
|z |2

|z |2
= 1 . (10)

Remarks: This allows to de�ne division by z ∈ C \ {0}, via

w

z
= w · z−1

All properties known for division in R remain true in C.
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Properties of the modulus

Note that for a real number x = x + i0, one computes

|x + i0| =
√
x2 + 02 = |x |. Hence the modulus of a real number is

the same, whether we regard x as a real or complex number.

Theorem. (Rules for the absolute value:)

Let w , z ∈ C
|z | ≥ 0, and |z | = 0⇔ z = 0.

|wz | = |w | |z |.
|z | = | − z | = |z |
|w + z | ≤ |w |+ |z |.

The last property is known as the triangle inequality. Useful

reformulations are

| |w | − |z | | ≤ |w + z | ≤ |w |+ |z | .
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Computing real and imaginary parts of a quotient

General procedure: Given a quotient z = x + iy
a + ib

, multiply

denominator and enumerator with the complex conjugate of the

denominator,

z =
x + iy

a + ib
=

(x + iy)(a − ib)

(a + ib)(a − ib)
=

(x + iy)(a − ib)

a2 + b2
.

Now the denominator is a real number, and we only need to

compute the enumerator using formula (5).

Example: Computing the real and imaginary part of z = 5+3i
1−2i :

z =
5 + 3i

1− 2i
=

(5 + 3i)(1 + 2i)

(1− 2i)(1 + 2i)
=
−1 + 13i

5
= −1

5
+

13

5
i .

Hence Re(z) = −1
5
and Im(z) = 13

5
.
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Summary: Algebraic Properties of C

So far, we have seen that the set C further expands our number

domain:

∅ ⊂ N ⊂ N0 ⊂ Z ⊂ Q ⊂ R ⊂ C

Algebraic operations, eg. taking sums, di�erences, products,

quotients, are extended to C, and the same computational rules as

for R apply to C also. (Exception: monotonicity).

Note: We can now take the square root of −1:

i2 = (0 + i · 1) · (0 + i · 1) = 02 − 12 + 1 · 0 + 0 · 1 = −1
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Geometric interpretation of complex numbers

A complex number a + ib is a pair of coordinates describing a point

(a, b) in the plane. The modulus is the distance to the origin. The

a-axis is called real axis, the b-axis is the imaginary axis.
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Some more examples
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Geometric interpretation of addition

The sum of two complex numbers z1, z2 corresponds to the

diagonal of the parallelogram with sides z1 and z2.

Triangle inequality: The sum of the sidelengths is greater than or

equal to the length of the diagonal.
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Geometric interpretation of complex conjugate

Taking complex conjugates or negatives of complex numbers

amounts to re�ection about a coordinate axis or about the origin
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Trigonometric functions

The geometric interpretation of the product requires polar

coordinates and trigonometric functions.

Consider a complex number z = a + ib with

1 = |z | =
√

a2 + b2

z describes an angle ϕ with the real axis, and |z | = 1 leads to the

equations

a = cos(ϕ) , b = sin(ϕ)
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Polar coordinates

For a general nonzero complex number z = a + ib, we write

z = |z |w , where w has length 1. We then get the same picture,

except that all lengths are multiplied by |z |:

Thus, every z ∈ C \ {0}, can be written (uniquely) as

z = r (cos(ϕ) + i sin(ϕ)) , where r > 0 and − π < ϕ ≤ π .

(r , ϕ) are the polar coordinates of z , with r = |z |, the length of z .

ϕ is called argument of z , denoted arg(z).
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Plots of sine and cosine

Useful values of sine and cosine:
α 0 π

6
π
4

π
3

π
2

π

sin(α) 0 1
2

√
2
2

√
3
2

1 0

cos(α) 1
√
3
2

√
2
2

1
2

0 −1
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Important properties of sine and cosine

Theorem.

Symmetry: For all angles α

sin(−α) = − sin(α) , cos(−α) = cos(α) , sin(α+
π

2
) = cos(α)

Periodicity:For all angles α

sin(α) = sin(α + 2π) , cos(α) = cos(α + 2π) .

For all angles α

sin(α)2 + cos(α)2 = 1

Addition Theorem. For all α, β ∈ R,

sin(α + β) = sin(α) cos(β) + sin(β) cos(α) (11)

cos(α + β) = cos(α) cos(β)− sin(β) sin(α) (12)
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Tangent and Arctangent

De�nition. For x ∈ R, we de�ne the tangent function as

tan(x) =
sin(x)

cos(x)

Properties of the tangent function:

1 tan is π-periodic. It is unde�ned for all x = kπ + π/2, with
k ∈ Z.

2 For all x ∈ R, tan(−x) = − tan(x).
3 For every y ∈ R there is a unique x with −π/2 < x < π/2

such that y = tan(x).
4 Let y ∈ R. Suppose that −π/2 < x < π/2 is the unique

number with tan(x) = y . We de�ne arctan(y) = x , the

arctangent of y .
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Plot of tangent

Useful values of tan:

α 0 π
6

π
4

π
3

π
2

π

tan(α) 0 1√
3

1
√
3 n.d. 0
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Computing polar coordinates

Given a complex number z = a+ ib, its length is easily computed as

|z | =
√

a2 + b2 .

The argument is de�ned as −π < α ≤ π such that

|z | cos(α) = a , |z | sin(α) = b .

Hence tan(α) = b

a
is a necessary requirement.

General formula: The argument of z = a + ib is given by

α =


arctan(b/a) a > 0

π − arctan(b/a) a < 0 < b

−π + arctan(b/a) a, b < 0

π/2 b > 0 ∧ a = 0

−π/2 b < 0 ∧ a = 0
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Geometric interpretation of the product

Let z1 = r1(cos(ϕ1) + i sin(ϕ1)) and w = r2(cos(ϕ2) + i sin(ϕ2)).
Then

z1z2 = r1r2(cos(ϕ1) cos(ϕ2)− sin(ϕ1) sin(ϕ2)

+ i (cos(ϕ1) sin(ϕ2) + cos(ϕ2) sin(ϕ1)))

Now the addition theorem for trigonometric functions yields

z1z2 = r1r2︸︷︷︸
= |z1z2|

(cos( ϕ1 + ϕ2︸ ︷︷ ︸
arg(z1z2)

) + i sin(ϕ1 + ϕ2)) ,

i.e., z1z2 has polar coordinates (r1r2, ϕ1 + ϕ2). Hence, one
computes the polar coordinates of z1 · z2 by

multiplying the lengths of z1 and z2, and

adding the arguments of z1 and z2
(possibly adding or subtracting 2π to remain in (−π, π])
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Illustration of multiplication
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Example: Multiplication by powers of i

i has polar coordinates (0, π/2). Hence multiplying by i is the same

as rotating by 90 degrees counterclockwise:
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Application: Integer powers and inverse

Theorem. (DeMoivre)

Let n ∈ N, and z = r(cos(ϕ) + i sin(ϕ)). Then

zn = rn(cos(nϕ) + i sin(nϕ))

i.e., zn has polar coordinates (rn, nϕ).

Inverse: 1 = (1, 0) ∈ C has length 1 and argument α = 0. Hence,

for arbitrary z ∈ C \ {0}
1 = |z · z−1| = |z | |z−1|, hence |z−1| = 1

|z|

the arguments add up to zero, hence z−1 has argument −ϕ

therefore the polar coordinates of z−1 are (r−1,−ϕ).

⇒ DeMoivre's theorem holds for all n ∈ Z
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Application: Taking roots

Let n ∈ N and w ∈ C \ {0}, with polar coordinates (r , ϕ). We

want to �nd all solutions of the equation

zn = w .

By periodicity of sin, cos, there are precisely n such complex

numbers, having polar coordinates(
r1/n,

ϕ

n

)
,

(
r1/n,

ϕ + 2π

n

)
, . . . ,

(
r1/n,

ϕ + 2π(n − 1)

n

)
.

Note: Some of the angles

ϕ

n
,
ϕ + 2π

n
, . . . ,

ϕ + 2π(n − 1)

n

are greater than π. We subtract 2π from these angles to obtain

angles in the prescribed interval (−π, π].
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Examples: Roots of −1

Example w = −1 has polar coordinates (1, π). Hence its square

roots have polar coordinates (1, π
2
) and (1,−π

2
), corresponding to

z0,1 = ±i .

The cubic roots of −1 have length 1 and arguments π
3
, π, −π

3
,

yielding

z0 =
1

2
+ i

√
3

2
, z1 = −1 , z2 =

1

2
− i

√
3

2

Left: Square roots, right: cubic roots of −1
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Further examples: Quadratic equation

Note: An arbitrary quadratic equation

z2 + az + b = 0 ,

with a, b ∈ C, has at least one complex solution. Just as for real

coe�cients, we can derive the formula

z1,2 =
a ±

√
a2 − 4b

2
,

describing all possible solutions, and the root can now be evaluated

for every choice of a and b.

Remark: In fact, much more is true. Given any polynomial

f (z) = zn + an−1z
n−1 + . . . + a1z + a0

with an−1, . . . , a0 ∈ C, there exists z ∈ C with f (z) = 0.
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Summary

Complex numbers and operations on them: Sums, products,

inverses of complex numbers

Imaginary and real parts, complex conjugates

Polar coordinates: Modulus, argument and their uses

Geometric interpretation of complex numbers and operations

on them

Computation of powers and roots of complex numbers
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