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Overview

@ Definition and basic operations
@ Properties of sum and product
© Geometric interpretation

@ Polar coordinates



Definition and basic operations

Motivation

Recall from last week:

e Extensions of number domains (e.g., from N to Z, from Z to
Q, from Q to R) are motivated partly by the desire to extend
operations (e.g., subtraction, division, powers).

@ A negative real number does not have a square root in R.

Definition. The set C of complex numbers is defined as

C={(x,y):x,y e R} .

where (x,y) denotes an ordered pair of real numbers.
Note: Two ordered pairs (a, b) and (x,y) are equal if and only if
a=xand b=y. In particular, (a, b) = (b, a) only if a = b.



Definition and basic operations

Operations on complex numbers

Definition. Let (a, b), (x,y) € C.
@ The sum resp. difference is defined as

(a,b) + (x,y) = (a+x,b+vy) (1)
(a,b) —(x,y) = (a—x,b—y) . (2)

@ The product is defined as

(a,b) - (x,y) = (ax — by, ay + bx) . (3)



Definition and basic operations

Notations for complex numbers

Pairs are useful for the rigourous definition of complex numbers.
For carrying out computations with complex numbers, other
notations are preferred.

e We identify (x,0) € C with x € R.
Note that now, x + y could mean the usual sum of real
numbers, or the result of the addition (x,0) + (y,0) in C.
However, the latter is (x + y,0), which we identify with x + y.
o We define the imaginary unit as i := (0,1) € C. Note i> = —1.
@ We can now write arbitrary complex numbers as

z=(xy)=(x,0+(0,y) =x+(0,1) -y =x+1iy .
@ In the new notation, sum and product become

(a+ib)+(x+1iy) = (a+x)+i(b+y) (4)
(a+ib)-(x+1y) = (ax—by)+i(ay+bx). (5)



Properties of sum and product

Axioms for sums and products

Theorem. All axioms regarding sums (differences) and products in
R carry over to C. In particular, the following properties can be
verified directly.

e Addition is commutative and associative.

@ Multiplication is commutative and associative.

@ The distributive law relating addition and multiplication holds.
°

Using the identifications from above, specifically 1 = (1,0)
and 0 = (0,0), we find for arbitrary z € C

z=z-1=z40,2z-0=0



Properties of sum and product

Complex conjugate, Real and Imaginary part, Modulus

Definition. For z = x + iy € C, we introduce the following notions:

Re(z) =x , the real part of z (6)
Im(z) =y , the imaginary part of z (7)
Z=x—1iy , the complex conjugate of z (8)

(9)

|z| = Vzz =\/x2+y2 , the modulus or length of z

Note that x? + y? > 0, hence |z| is well-defined and positive. |z| is
also called absolute value of z.

Useful formulas:

z =Re(z) + iIm(z) , Re(z) = z —; z , Im(z) = i




Properties of sum and product

Complex division

Theorem. For z = x + iy € C\ {0}, write
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Remarks: This allows to define division by z € C\ {0}, via

w —
7zw.zl
z

All properties known for division in R remain true in C.



Properties of sum and product

Properties of the modulus

Note that for a real number x = x + i0, one computes
|x +i0] = v'x? + 0% = |x|. Hence the modulus of a real number is
the same, whether we regard x as a real or complex number.

Theorem. (Rules for the absolute value:)
Let w,zc C

|z| >0, and |z =0 z=0.
wz| = [w| [2].

z| = |-z = [z]

lw+ 2| < |w|+2].

The last property is known as the triangle inequality. Useful
reformulations are

| wl =z | < [w+ 2| < [w|+ 7]



Properties of sum and product

Computing real and imaginary parts of a quotient

X 41y
_ _ a++ib’
denominator and enumerator with the complex conjugate of the
denominator,

General procedure: Given a quotient z =

multiply

_x+ iy _ (x+1iy)(a—ib) _ (x+1iy)(a—ib)
a+ib (a+ib)(a—ib) a? + b?

Now the denominator is a real number, and we only need to
compute the enumerator using formula (5).

5+3i.

Example: Computing the real and imaginary part of z = 35

C543i  (543)(1+2) -1413 1 13

= — -S4

T 12 (1-2i)(1+2)) 5 5 5

Hence Re(z) = —1 and Im(z) = £.



Properties of sum and product

Summary: Algebraic Properties of C

So far, we have seen that the set C further expands our number
domain:
0cNCNgCZcCcQcRcC

Algebraic operations, eg. taking sums, differences, products,
quotients, are extended to C, and the same computational rules as
for R apply to C also. (Exception: monotonicity).

Note: We can now take the square root of —1:

2=04+i-1)-(0+i-1)=0"—-1241-040-1=—1



Geometric interpretation

Geometric interpretation of complex numbers

A complex number a+ ib is a pair of coordinates describing a point
(a, b) in the plane. The modulus is the distance to the origin. The
a-axis is called real axis, the b-axis is the imaginary axis.




Geometric interpretation

Some more examples

e 20 =142
21:—\/§+i% L4

\

iy

z2n=—-1—iy/3 e ca=l-i




Geometric interpretation

Geometric interpretation of addition

The sum of two complex numbers z;, z» corresponds to the
diagonal of the parallelogram with sides z; and z.

Triangle inequality: The sum of the sidelengths is greater than or
equal to the length of the diagonal.

\/




Geometric interpretation

Geometric interpretation of complex conjugate

Taking complex conjugates or negatives of complex numbers
amounts to reflection about a coordinate axis or about the origin

—Z=—a+bi A z=a+bi
[ ] [ ]

—z=—a—bi Z=a-—bi




Polar coordinates

Trigonometric functions

The geometric interpretation of the product requires polar
coordinates and trigonometric functions.
Consider a complex number z = a + ib with

1=|z| = Va2 + b2

z describes an angle ¢ with the real axis, and |z| = 1 leads to the
equations

a=cos(p) , b=sin(p)

b =sing F-—

a=cosp



Polar coordinates

Polar coordinates

For a general nonzero complex number z = a + ib, we write
z = |z|w, where w has length 1. We then get the same picture,
except that all lengths are multiplied by |z|:

z=a+1b
b= |z|sinp F--

a=|z| cosyp

Thus, every z € C\ {0}, can be written (uniquely) as
z =r(cos(p) +isin(p)) ,wherer >0and — 7 <@ <m

(r,) are the polar coordinates of z, with r = |z|, the length of z.
@ is called argument of z, denoted arg(z).



Polar coordinates

Plots of sine and cosine

Useful values of sine and cosine:

@ 6 | 4 | 3 | 2| ™
sin(«) 12131 o
cos(a) | 1 § g Flol-1




Polar coordinates

Important properties of sine and cosine

Theorem.
e Symmetry: For all angles o
sin(—a) = —sin(a) , cos(—a) = cos(a) sin(oz+g) = cos(«)
@ Periodicity:For all angles «
sin(a) = sin(a + 27) , cos(a) = cos(a + 27) .
@ For all angles o
sin(a)? + cos(a)? = 1
@ Addition Theorem. For all o, 8 € R,

sin(a + ) = sin(a)cos(f) +sin(B)cos(ca)  (11)
cos(aw + 3) = cos(a)cos(B) —sin(B)sin(a)  (12)



Polar coordinates

Tangent and Arctangent

Definition. For x € R, we define the tangent function as

- 282

Properties of the tangent function:

@ tan is w-periodic. It is undefined for all x = k7 + 7/2, with
keZ.

@ For all x € R, tan(—x) = —tan(x).

© For every y € R there is a unique x with —7/2 < x < 7/2
such that y = tan(x).

Q Let y € R. Suppose that —7/2 < x < 7/2 is the unique
number with tan(x) = y. We define arctan(y) = x, the
arctangent of y.



Plot of tangent

Useful values of tan:

o |

0
0

tan(«) ‘



Polar coordinates

Computing polar coordinates

Given a complex number z = a+ ib, its length is easily computed as
2| = V2% + b2 .
The argument is defined as —7 < o < 7 such that
|z| cos(a) = a, |z|sin(a) = b .
b

Hence tan(a) = 7 is a necessary requirement.

General formula: The argument of z = a + ib is given by

arctan(b/a) a>0
7 — arctan(b/a) a<0<b
a = —m+arctan(b/a) a,b<0
/2 b>0MNa=0

—m/2 b<O0ANa=0



Polar coordinates

Geometric interpretation of the product

Let z; = ri(cos(p1) + isin(¢1)) and w = ra(cos(p2) + isin(p2)).
Then
71z = nr(cos(p1)cos(e2) — sin(p1)sin(p2)
+ i (cos(p1)sin(p2) + cos(w2)sin(e1)))

Now the addition theorem for trigonometric functions yields

zizp= nrn  (cos( 1+ p2)+isin(p1 +¢2)) ,
~~ —_——
= |z125| arg(z122)
i.e., z1zp has polar coordinates (rirz2, v1 + ¢2). Hence, one
computes the polar coordinates of z; - z> by

e multiplying the lengths of z; and z, and

@ adding the arguments of z; and z
(possibly adding or subtracting 27 to remain in (—m, 7])



[llustration of multiplication

Polar coordinates

z2

zZ1 %9

©1 + P2

Y2
21

®1

\



Polar coordinates

Example: Multiplication by powers of i

i has polar coordinates (0,7/2). Hence multiplying by i is the same
as rotating by 90 degrees counterclockwise:

A z=a+1ib

iz=—-b+1ia

i*z=b—1ia

i“z=—a—1b



Polar coordinates

Application: Integer powers and inverse

Theorem. (DeMoivre)
Let n € N, and z = r(cos(y) + isin(¢)). Then

z" = r"(cos(np) + isin(ny))
i.e., z" has polar coordinates (r, np).

Inverse: 1 = (1,0) € C has length 1 and argument oo = 0. Hence,
for arbitrary z € C\ {0}

o 1=|z-z7' =|z| |z}, hence |z7}| = &

Z]
o the arguments add up to zero, hence z71 has argument —y

therefore the polar coordinates of z71 are (r=1, —¢).

= DeMoivre's theorem holds for all n € Z



Polar coordinates

Application: Taking roots

Let n € Nand w € C\ {0}, with polar coordinates (r, ). We
want to find all solutions of the equation

Z"=w .

By periodicity of sin, cos, there are precisely n such complex
numbers, having polar coordinates

(rl/n f) rl/n ¢ +27 rl/n 90+27T(n_1)
") ’ n LI > n

Note: Some of the angles

p p+2m e+ 2m(n—1)
n" n 77 n
are greater than . We subtract 27 from these angles to obtain

angles in the prescribed interval (—m, 7].




Polar coordinates

Examples: Roots of —1

Example w = —1 has polar coordinates (1, 7). Hence its square
roots have polar coordinates (1, 5) and (1,—7%), corresponding to
20,1 = *I.
The cubic roots of —1 have length 1 and arguments 7,7, 5%,
yielding

1,.V3 1 V3

D= tig s as=-l, =i

Left: Square roots, right: cubic roots of —1




Polar coordinates

Further examples: Quadratic equation

Note: An arbitrary quadratic equation
2+az+b=0 ,

with a, b € C, has at least one complex solution. Just as for real
coefficients, we can derive the formula

at+va? —4b

Z12 =
’ 2

describing all possible solutions, and the root can now be evaluated
for every choice of a and b.

Remark: In fact, much more is true. Given any polynomial
f(z)=2"+ an 12" '+ .. . +az+ag

with a,_1,...,a9 € C, there exists z € C with f(z) = 0.



Polar coordinates

Summary

@ Complex numbers and operations on them: Sums, products,
inverses of complex numbers

@ Imaginary and real parts, complex conjugates
@ Polar coordinates: Modulus, argument and their uses

@ Geometric interpretation of complex numbers and operations
on them

o Computation of powers and roots of complex numbers
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