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Motivation

For arbitrary n + 1 times di�erentiable functions f , the Taylor

polynomial

Tn,0(x) =
n∑

k=0

f (k)(0)

k!
xk

is only assumed to be an accurate approximation of f (x) for x ≈ 0.

The reasoning is that the remainder term

Rn,0(x) =
f (n+1)(y)

(n + 1)!
xn+1

with suitable y between 0 and x , is small because x is small (and

xn+1 is even smaller).
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Motivation

However, the Taylor polynomial will also provide a good

approximation if x is not too big, and instead,

f (n+1)(y)

(n + 1)!
≈ 0 .

I.e., if the derivative does not grow too fast on the interval between

0 and x , the Taylor approximation is accurate on larger intervals.

Thus, at least for certain functions f , summing over more terms of

the Taylor series should approximate f on larger sets.
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Second motivation

For arbitrary x , y ∈ R, with x > 0, what is xy?

Using standard operations (products, roots), we can evaluate xy

only for rational numbers y : If y = n
m
, then

xy = (xn)1/m = m

√
xn .

For irrational y , something else is needed.

Solution: For base e = 2.7182..., we de�ne ey via a power series

ey =
∞∑
n=0

yn

n!
.

For other bases x , we de�ne xy from this function and the natural

logarithm.
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Power series

De�nition. An expression of the sort

f (x) =
∞∑
k=0

ak(x − x0)
k

is called a power series in x .

Remarks

If
∑∞

k=0 |ak |rk < ∞, for some r > 0, then f (x) is well-de�ned
for all x with |x − x0| < r . Moreover, f is in�nitely

di�erentiable in (−r , r).
If a function f has a power series, this series is the Taylor

series of f around x0.
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Taylor series

De�nition. Let f : D → R denote an in�nitely di�erentiable

function, with x0 ∈ D. Then its Taylor series at x0 is de�ned as the

series

T∞,x0(x) =
∞∑
k=0

f (k)(x0)

k!
(x − x0)

k ,

Note: The Taylor series need not converge. Even when it does,

T∞,x0(x) need not coincide with f (x). However, for certain
functions f , one �nds that

Rn,x0(x) → 0 , as n→∞

and thus T∞,x0(x) = f (x).
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Radius of convergence

Theorem. Consider a power series

(∗) f (x) =
∞∑
k=0

ak(x − x0)
k .

Suppose that one of the two cases holds:

c = limn→∞
n

√
|an| exists.

In this case, let r = 1/c . If c = 0, let r = ∞.

r = limn→∞
|an|
|an+1|

exists.

Then (∗) converges if |x − x0| < r , and diverges if |x − x0| > r .

If both limits exist, the two parts give the same value for r .

The number r in the Theorem is called radius of convergence. The

interval (x0 − r , x0 + r) is called interval of convergence.
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Radius of convergence of the derivative

Theorem. Consider a power series

(∗) f (x) =
∞∑
k=0

ak(x − x0)
k .

with radius of convergence r > 0 (possibly r = ∞).

f is di�erentiable, and f ′ is given by the power series of f ′

f ′(x) =
∞∑
k=1

kak(x − x0)
k−1 ,

with radius convergence equal to r .

Applying the previous observations repeatedly, we obtain

f (n)(x) =
∞∑
k=0

bk(x − x0)
k ,

where bk = (k+n)!
k! ak+n.
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Example: Cosine function

Let f (x) = cos(x). Then, using cos′ = − sin and sin′ = cos, we can

compute all higher derivatives as

f (n) =

{
(−1)k+1 sin(x) n = 2k + 1

(−1)k+1 cos(x) n = 2k

Hence, plugging sin(0) = 0, cos(0) = 1 into the Taylor polynomial,

we obtain

T2n,0(x) =
n∑

k=0

(−1)kx2k

(2k)!
= 1− x2

2!
+

x4

4!
− x6

6!
+ . . .
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Residual of the cosine function

The nth residual of the cosine function is estimated as

|Rn,0(x)| =

∣∣∣∣∣cos(n+1)(z)

(n + 1)!
xn+1

∣∣∣∣∣ ≤
∣∣∣∣ xn+1

(n + 1)!

∣∣∣∣
We want to �nd a range for x such that the Taylor approximation

for f (x) is accurate up to precision 0.1. Taking the n + 1st root,∣∣∣∣ xn+1

(n + 1)!

∣∣∣∣ < 0.1⇔ |x | <
(

(n + 1)!

10

)(n+1)−1

This last inequality is ful�lled for instance,

if n = 4 and |x | < 1.64;

or if n = 12 and |x | < 4.74;

or if n = 18 and |x | < 7.02.
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Approximation of the cosine function

Blue: cos(x), Red: T4,0(x) = 1− x2

2! + x4

4!
Accurate up to 0.1 for |x | < 1.64
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Approximation of the cosine function

Blue: cos(x), Red: T12,0(x) = 1− x2

2! + x4

4! −
x6

6! + x8

8! −
x10

10! + x12

12!
Accurate up to 0.1 for |x | < 4.74
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Approximation of the cosine function

Blue: cos(x), Red: T18,0(x) = 1− x2

2! + x4

4! + ... + x16

16! −
x18

18!
Accurate up to 0.1 for |x | < 7.02
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Power series for cos, sin

We compute the radius of convergence for the coe�cients given by

an =

 0 n = 2k + 1

(−1)k
(2k)!

n = 2k

Now Stirling's formula allows to show that

n

√
|an| → 0 as n→∞

and thus r = ∞. The same argument works for sin, hence:

Theorem. For all x ∈ R

cos(x) =
∞∑
k=0

(−1)kx2k

(2k)!
, sin(x) =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!



De�nition Radius of convergence Trigonometric functions exp and log Complex exponential

The exponential function

De�nition. The function exp : R → R de�ned by the series

exp(x) =
∞∑
k=0

xk

k!

is called exponential function.
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Properties of the exponential function

Theorem.

1 exp : R → R is continuous and strictly positive.

2 exp translates addition to multiplication:

For all x , y ∈ R, exp(x + y) = exp(x) exp(y).

3 exp is di�erentiable, with exp′ = exp. In particular, exp is

strictly increasing.

4 limx→−∞ exp(x) = 0 and limx→∞ exp(x) = ∞.

5 exp : R → (0,∞) is bijective.
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exp and e
x

An alternative formula for exp is

exp(x) = lim
n→∞

(
1 +

x

n

)1/n
.

In particular, exp(1) = e (Euler's constant).

Using multiplicativity of exp, one can show for n ∈ Z,m ∈ N
that

exp(n/m) = en/m

Hence exp(x) = ex for rational x .

We then de�ne for arbitrary x ∈ R:

ex = exp(x) .
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The natural logarithm

Recall: exp : R → (0,∞) is bijective. The inverse function is

denoted as ln : (0,∞) → R, the natural logarithm.

Blue: exp, red: ln
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Properties of ln

Theorem.

1 ln : (0,∞) → R is continuous, bijective, and strictly increasing.

2 ln translates multiplication to addition:

For all x , y ∈ (0,∞), ln(xy) = ln(x) + ln(y).

3 ln is di�erentiable on (0,∞), with

ln′(x) =
1

x
.

4 limx→0 ln(x) = −∞ and limx→∞ exp(x) = ∞.

5 ln : (0,∞) → R is bijective.
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Arbitrary exponentials

We de�ne xy for arbitrary x > 0 and y ∈ R.

xy = e ln(x)y .

Then f (x) = xy ful�lls

1 f : R → (0,∞) is bijective.

2 f translates addition to multiplication:

For all s, t ∈ R, x s+t = x sx t .

3 f is di�erentiable, with f ′ = ln(x)f .

4 Multiplication of exponents becomes exponentiation:

For all s, t ∈ R, x st = (x s)t .
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Arbitrary logarithms

The function f (y) = xy has an inverse function, called base x

logarithm, denoted by logx . The function is computed as

logx(y) =
ln(y)

ln(x)

Often used bases, besides e, are

10 ( common logarithm = log = log10)

2 (dyadic logarithm = log2)

Derivatives of logarithms:

d logx
dy

(y0) =
1

ln(x)y0
.
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Application: Radioactive decay

If a quantity A of a radioactive substance is given at time t = 0,

the remaining amount at time t > 0 is described by

f (t) = Ae−λt .

Here λ > 0 is the decay rate of the substance. λ is usually

determined by measuring the half-life of the substance, i.e., the

time t1/2 > 0 for which

f (t1/2) =
f (0)

2
=

A

2
.

λ can be computed from t1/2, and vice versa, because:

2 =
f (0)

f (t1/2)
=

A

Ae−λt1/2
= eλt1/2 ⇔ λt1/2 = ln(2) .
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Complex exponential and Euler's formula

Observation: The series

exp(z) =
∞∑
k=0

zk

k!

converges for every z ∈ C. The result is a function

exp : C → C

with many interesting properties, in particular,

exp(z + w) = exp(z) exp(w) .

Sorting the real and imaginary parts of exp(iϕ) results in Euler's

formula for α ∈ R

e iα = cos(α) + i sin(α) .
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A proof of Euler's formula

To prove Euler's formula, write

e iα =
∞∑
k=0

(iα)k

k!
=

∞∑
k=0

ikαk

k!
.

Using

i2 = −1, i3 = −i , i4 = 1, i5 = i1, . . .

we �nd that the series splits into a real part (corresponding to even

k) and a purely imaginary part (corresponding to odd k), yielding

e iα =
∞∑
k=0

(−1)k α2k

(2k)!
+ i

∞∑
k=0

(−1)k α2k+1

(2k + 1)!

= cos(α) + i sin(α) .
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An application of Euler's formula

Addition theorems: Given α, β ∈ R, we compute e i(α+β) in two

di�erent ways:

(∗) e i(α+β) = cos(α + β) + i sin(α + β) ,

or, using e i(α+β) = e iαe iβ ,

e i(α+β) = (cos(α) + i sin(α))(cos(β) + i sin(β))

= cos(α) cos(β)− sin(α) sin(β)

+ i(cos(α) sin(β) + sin(α) cos(β)) .

A comparison of the last expression with the right-hand side of (∗)
yields the addition theorems for sin, cos:

cos(α + β) = cos(α) cos(β)− sin(α) sin(β)

sin(α + β) = cos(α) sin(β) + sin(α) cos(β)
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Summary

Power series and radius of convergence

Power series representation of sin, cos

The exponential function exp and its properties

Natural logarithms, arbitrary powers and logarithms

Derivatives of powers and logarithms

Rules for powers and logarithms

Complex exponential and Euler's formula
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