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Motivation: Computing �ow from �ow rates

We observe the �ow of water through a drain, which varies with
time.

The result is a �ow rate, in litres/second, continuously recorded
over a time interval [a, b]. From these data, we want to determine
the total amount A of water that has passed through the valve
during the interval. This value corresponds to the area under the
graph of f .
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Answer for constant rate

If the �ow rate is constant, say equal to c , the answer is easily
obtained:

A = (length of the interval) · (�ow rate) = (b − a) · c

This corresponds to the formula

area = width · height .

for rectangular areas.

The idea to calculate the area under arbitrary graphs is to
approximate the graph by piecewise constant functions.
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Area under the graph: Piecewise constant functions

A piecewise constant function or step function is a function
f : [a, b] → R that consists of �nitely many constant pieces

Here, the region under the graph is made up out of rectangles and
its area is computed by summing the areas of the rectangles.
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Partition

De�nition. Let I = [a, b] ⊂ R be some interval. A partition of I is
given by a �nite subset P = {x0, . . . , xn} satisfying {a, b} ∈ P.
Without loss of generality,

a = x0 < x1 < x2 < . . . < xn = b .

Example: The set P = {0, 0.3, 0.5, 0.8, 1.0} de�nes a partition of
the interval [0, 1].
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Approximation by step functions

De�nition.
Let f : [a, b] → R be a function, and P = {x0, x1, . . . , xn} a
partition. We de�ne

Mk(f ) = sup{f (x) : xk < x < xk+1}
Mk(f ) = inf{f (x) : xk < x < xk+1}

Interpretation: Mk and Mk provide optimal approximation of the
graph of f by step functions with jumps in P, one from above, one
from below.
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Example: Approximation from above

A function de�ned on [0, 3], partition P = {0, 1, 2, 3}.
Blue: Function graph, Black: Step function associated to Mk



Motivation Pw constant fns Riemann integral Properties

Example: Approximation from below

A function de�ned on [0, 3], partition P = {0, 1, 2, 3}.
Blue: Function graph, Black: Step function associated to Mk
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Upper and lower sum

De�nition. Let f : [a, b] → R, and let P = {x0, x1, . . . , xn} be a
partition of [a, b], with a = x0 < x1 < . . . < xn = b. We write

S(P) =
n∑

k=1

Mk−1(xk − xk−1)

S(P) =
n∑

k=1

Mk−1(xk − xk−1)

Interpretation:

The area below the step function with values Mk−1 contains
the area below the graph of f . Hence S(P) is greater or equal
to the area below the graph of f .

Likewise: S(P) is smaller or equal to the area below the graph
of f .
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Graphical interpretation of upper and lower sum

The di�erence S(P)− S(P) is the area between upper and lower
step function approximation
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Re�nement of a partition

De�nition. Let P1,P2 be two partitions of [a, b]. Then P1 is called
re�nement of P2 if P1 ⊃ P2.

Interpretation:

If P1 ⊃ P2, then

S(P2) ≤ S(P1) ≤ S(P1) ≤ S(P2)

Hence the area between upper and lower approximation
decreases.

The two should approximate the same value, as the partition
gets �ner and �ner.



Motivation Pw constant fns Riemann integral Properties

Illustration for re�nement

A function f : [0, 3] → R, partition {0, 1, 2, 3}, lower and upper
approximation
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Illustration for re�nement

The same function, lower and upper approximation for the
re�nement
{0, 0.5, 0.7, 0.8, 0.9, 1, 1.3, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.2, 2.4, 2.6, 2.8, 3}.
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Riemann integrable function

De�nition. The function f : [a, b] → R is called (Riemann)
integrable if for every ε > 0 there is a partition P of [a, b] such that

S(P)− S(P) < ε

Note: This implies
S(P ′)− S(P ′) < ε

for every re�nement P ′ of P.
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Convergence of upper and lower sums

Theorem 1.
Let f be a Riemann integrable function. Let Pn be a sequence of
partitions satisfying δn → 0, where δn is the maximal distance of
two neighboring elements of Pn.
Then

I (f ) = lim
n→∞

S(Pn)

exists, with
I (f ) = lim

n→∞
S(Pn).

Moreover, I (f ) is the same for all sequences of partitions with
δn → 0.
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De�nition of the Riemann integral

De�nition. If f is integrable, I (f ) as in Theorem 1. I (f ) is called
the (Riemann) integral of f over [a, b], and denoted as∫ b

a

f (x)dx .

a is called lower bound of the integral, b is called upper bound of
the integral, and f is called the integrand.
Furthermore, we de�ne, for a < b,∫ a

b

f (x)dx = −
∫ b

a

f (x)dx

as well as ∫ a

a

f (x)dx = 0
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Criteria for Riemann integrability

Su�cient conditions:

If f is continuous on [a, b], then f is integrable.

If f is monotonic and bounded on [a, b], then f is integrable.

Example: A bounded function that is not Riemann integrable:

f : [0, 1] → R , f (x) =

{
1 x ∈ Q
−1 x 6∈ Q

For every partition P, one �nds

S(P) = 1 6= −1 = S(P) .
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Properties of the Riemann integral

Theorem 2.
Let f , g be integrable over the interval with bounds a, b, let s ∈ R

sf is integrable, with
∫ b

a
sf (x)dx = s

∫ b

a
f (x)dx .

f + g is integrable, with∫ b

a
f (x) + g(x)dx =

∫ b

a
f (x)dx +

∫ b

a
g(x)dx .

Let c in R be such that f is integrable over [b, c]. Then f is
integrable over [a, c], with∫ c

a

f (x)dx =

∫ b

a

f (x)dx +

∫ c

b

f (x)dx .

If f is integrable, then |f | is integrable as well, with∣∣∣∣∣
∫ b

a

f (x)dx

∣∣∣∣∣ ≤
∫ b

a

|f (x)|dx
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Monotonicity of integrals

Theorem 3.
Let a ≤ b, let f : [a, b] → R be integrable and bounded, with

m ≤ f (x) ≤ M , for all x ∈ [a, b]

Then

m(b − a) ≤
∫ b

a

f (x)dx ≤ M(b − a) .

This applies in particular, when f is continuous on [a, b], and

m = min
x∈[a,b]

f (x) , M = max
x∈[a,b]

f (x) .

More generally, if f , g : [a, b] → R are integrable, with f (x) ≤ g(x)
for all x ∈ [a, b], then∫ b

a

f (x)dx ≤
∫ b

a

g(x)dx .



Motivation Pw constant fns Riemann integral Properties

Illustration for the estimate
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Fundamental Theorem of Calculus

Theorem 4.
Let f : [a, b] → R be continuous. We de�ne

F : [a, b] → R , F (y) =

∫ y

a

f (x)dx

Then F is continuous on [a, b], di�erentiable on (a, b), with

F ′(x) = f (x) , ∀x ∈ (a, b) .

Conversely, suppose that G : [a, b] → R is continuous, di�erentiable
on (a, b) with G ′ = f . Then the integral is computed as∫ b

a

f (x)dx = G |ba := G (b)− G (a)
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Integration and antiderivatives

Remarks: Let f : [a, b] → R be a continuous function.

A di�erentiable function F with F ′ = f is called antiderivative
or primitive of f . Hence f has a primitive given by

F (y) =

∫ y

a

f (x)dx .

Two primitives F ,G of f only di�er by a constant:
F (x) = G (x)− c , with c ∈ R �xed. By letting

F (y) =

∫ y

a

f (x)dx

one obtains the unique primitive of f satisfying F (a) = 0.

It is customary to denote primitives as F =
∫
f (x)dx (without

bounds), and refer to them as inde�nite integrals of f .
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Application: The length of a curve

De�nition.
Let f : [a, b] → Rn be given, i.e.,

f (x) = (f1(x), f2(x), . . . , fn(x))T .

The set
C = {f (x) : x ∈ [a, b]}

is called a curve in Rn, and f is called parameterization of C.
We assume that all fi are continuously di�erentiable on (a, b) and
continuous on [a, b]. We de�ne the length of C as

l(C) =

∫ b

a

√
f ′1(x)2 + f ′2(x)2 + . . . + f ′n(x)2dx
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Example: Circumference of the circle

We consider the map f : [0, 2π] → R2, with
f (x) = (sin(x), cos(x)). The resulting curve is the unit circle.

We compute

f ′1(x) = cos(x) , f ′2(x) = − sin(x)

and thus, using sin2 + cos2 = 1,∫ 2π

0

√
f ′1(x)2 + f ′2(x)2dx =

∫ 2π

0

1dx = 2π .
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Example: Length of a graph

We want to determine the length of the graph Gf of f (t) = t2, for
t ∈ [0, 1]. Gf is parameterized by

g : [0, 1] → R2 , g(t) = (t, t2)T .

Using g ′1(t) = 1, g ′2(t) = 2t, we obtain

l(Gf ) =

∫ 1

0

√
1 + 4t2dt .

One can check that

F (t) =
1

4

(
2t

√
1 + 4t2 + ln(2t +

√
1 + 4t2))

)
is a primitive of g(t) =

√
1 + 4t2. Hence,

l(Gf ) = F |10 =
1

4

(
2
√
5 + ln(2 +

√
5)

)
− 0
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Summary

De�nition and interpretation of integrals; area under the graph

Integrability criteria: Continuity, monotonicity

Properties of the integral: Linearity, monotonicity

Evaluation of integrals via antiderivatives
( New problem: How to obtain antiderivatives)

Application of integrals: Curve length
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