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Motivation

Recall from last week: An integral∫ b

a

f (x)dx

can be computed in two steps:

Determine a primitive F of f ;

Evaluate at the boundaries:
∫ b
a
f (x)dx = F |ba = F (b)− F (a).

Unfortunately, there is no simple general procedure for the

computation of primitives.

Methods for the simpli�cation of integrals are obtained by reading

di�erentiation rules backwards.
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Integrating polynomials

Recall: Monomials f (x) = xn are easily di�erentiated:

f ′(x) = nxn−1. Conversely, a primitive of f is obtained as

F (x) = xn+1

n+1
. As a consequence, a primitive of a polynomial

f (x) = akx
k + ak−1x

k−1 + . . . + a0

is obtained as

F (x) =
ak

k + 1
xk+1 +

ak−1

k
xk + . . . + a0x + c ,

where c ∈ R is chosen arbitrarily.

Note: The function F (x) = xs+1

s+1
is in fact a primitive for f (x) = x s ,

if s ∈ R \ {−1}. The primitive of f (x) = x−1 is F (x) = ln(|x |).
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Product rule and integration by parts

Recall: The product rule for derivatives is

(fg)′(x) = f ′(x)g(x) + f (x)g ′(x) .

We use this for the treatment of integrands of the form f ′g :∫ b

a

f ′(x)g(x)dx =

∫ b

a

(fg)′(x)dx −
∫ b

a

f (x)g ′(x)dx

= f (b)g(b)− f (a)g(a)−
∫ b

a

f (x)g ′(x)dx

For inde�nite integrals, the rule becomes∫
f ′(x)g(x)dx = fg −

∫
f (x)g ′(x)dx .

Rule of thumb: Integration by parts is useful whenever fg ′ is
simpler to integrate than f ′g .
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Example for integration by parts

Example: Using f (x) = ex and g(x) = x2, we �nd∫ 1

0

exx2dx =

∫ 1

0

f ′(x)g(x)dx

= x2ex |10 −
∫ 1

0

2xexdx

= e − 2

∫ 1

0

xexdx

We apply integration by parts again, this time with f (x) = ex and

g(x) = x , to obtain

e − 2

∫ 1

0

xexdx = e − 2(xex)|10 + 2

∫ 1

0

exdx

= e − 2(1 · e1 − 0e0) + 2ex |10 = e − 2
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Further example for integration by parts

Example: We want to determine a primitive for ln(x), by evaluating

the integral

F (y) =

∫ y

1

ln(x)dx .

Integration by parts of 1 · ln(x) yields∫ y

1

ln(x)dx = x ln(x)|y1 −
∫ y

1

x
1

x
dx

= y ln(y)−
∫ y

1

dx

= y ln(y)− y + 1
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Chain rule and substitution

Recall: The chain rule for derivatives states that

(f ◦ g)′(x) = f ′(g(x))g ′(x) .

This translates to the following integration rule:

Substitution rule. Suppose that g : [a, b] → R is continuously

di�erentiable, and that f : g([a, b]) → R is integrable. Then∫ b

a

f (g(x))g ′(x)dx =

∫ g(b)

g(a)
f (y)dy .

Proof: If F is a primitive of f , then H(x) = F (g(x)) is a primitive

of f (g(x))g ′(x). Therefore∫ b

a

f (g(x))g ′(x)dx = H(b)−H(a) = F (g(b))−F (g(a)) =

∫ g(b)

g(a)
f (y)dy
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Substitution and change of variables

It is customary to think of g(x) as a new variable y replacing x .

y ranges from g(a) to g(b) as x ranges from a to b. Moreover,

dy

dx
= g ′(x) , hence formally dy =

dy

dx
dx = g ′(x)dx

which results in the formula∫ b

a

f (y)dy =

∫ y(b)

y(a)
f (x)dx .

Rule of thumb: Substitution is useful, whenever the integrand can

be written as g ′(x) · H(x), where g and H are suitable functions,

and H(x) can be expressed in terms of g(x).
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Examples for substitution

First example: We wish to compute the integral∫ 2

0

x sin(x2) dx =
1

2

∫ 2

0

sin(x2)2xdx =
1

2

∫ 2

0

f (g(x))g ′(x)dx ,

with f (y) = sin(y) and g(x) = x2. Hence dy = 2xdx , and

1

2

∫ 2

0

sin(x2)2xdx =
1

2

∫ 22

02
sin(y)dy =

1

2
(1− cos(4))

Second example: Let f (x) = g ′(x)
g(x) , with g continuously

di�erentiable and non-vanishing on [a, b]. Then∫ b

a

g ′(x)

g(x)
dx =

∫ b

a

1

g(x)
g ′(x)dx

=

∫ g(b)

g(a)

1

y
dy = ln(|g(b)|)− ln(|g(a)|)
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Example: Substitution for an inde�nite integral

We want to determine F =
∫

(x + 2) sin(x2 + 4x − 6)dx .
Substituting

y = x2 + 4x − 6 , dy = (2x + 4)dx , (x + 2)dx =
dy

2

we �nd

F (x) =

∫
f (x)dx =

∫
sin(y)

dy

2
= −cos(y)

2
= −cos(x2 + 4x − 6)

2
.

Remark: The new variable y serves as a reminder that we must

carry out the substitution before evaluating the integral.
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Integration of rational functions

Aim of the following: A recipe for the integration of functions of

the type

f (x) =
P(x)

Q(x)
=

smx
m + sm−1x

m−1 + . . . + s0

bnxn + bn−1xn−1 + . . . + b0

Note: One can always write

f (x) = c`x
` + . . . + c0 +

akx
k + ak−1x

k−1 + . . . + a0

bnxn + bn−1xn−1 + . . . + b0
,

with k < n. We already know how to integrate the polynomial part.

Strategy:

Write f as a sum of manageable pieces;

devise a method to integrate the manageable pieces.
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Decomposition into manageable pieces

Theorem. Let

f (x) =
P(x)

Q(x)
=

akx
k + ak−1x

k−1 + . . . + a0

bnxn + bn−1xn−1 + . . . + b0
.

Then Q has a unique factorization

Q(x) = C (x−ξ1)
k1 · · · (x−ξs)

ks (x2+β1x+γ1)
l1 · · · (x2+βtx+γt)

lt .

with suitable numbers s, t, ki , li ∈ N, ξi , βi , γi ∈ R, satisfying in

addition

4γi − β2
i > 0 (i = 1, . . . , t) .

This condition is equivalent to requiring that x2 + βix + γi 6= 0, for

all x ∈ R and all i = 1, . . . , t.
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Decomposition into manageable pieces continued

Let f ,P,Q be as on the previous slide, with k < n . Then there

exist unique coe�cients Ai ,j ,Bi ,j ,Ci ,j such that

f (x) =
A1,1

(x − ξ1)1
+

A1,2

(x − ξ1)2
+ . . . +

A1,k1

(x − ξ1)k1

+
A2,1

(x − ξ2)1
+

A2,2

(x − ξ2)2
+ . . . +

A2,k2

(x − ξ2)k2

+ . . .

+
As,1

(x − ξs)1
+

As,2

(x − ξs)2
+ . . . +

As,ks

(x − ξs)ks

+
B1,1x + C1,1

(x2 + β1x + γ1)1
+ . . . +

B1,l1x + C1,l1

(x2 + β1x + γ1)l1

+ . . .

+
Bt,1x + Ct,1

(x2 + βtx + γt)1
+ . . . +

Bt,ltx + Ct,lt

(x2 + βtx + γt)lt

This sum is called partial fraction decomposition of f .
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Example

Suppose that

f (x) =
1 + x2

(x + 1)3(x2 + x + 1)2

Then the partial fraction decomposition of f is of the form

f (x) =
A1

x + 1
+

A2

(x + 1)2
+

A3

(x + 1)3

+
B1x + C1

x2 + x + 1
+

B2x + C2

(x2 + x + 1)2

Hence we need to determine 7 coe�cients, A1, . . . ,C2.

Note: The enumerator does not in�uence the form of the partial

fraction decomposition. It is needed to determine the coe�cients

A1,A2, . . ..
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Primitives for manageable pieces

We still need primitives for the partial fractions:

A

(x − ξ)n
,

Bx + C

(x2 + βx + γ)n

with 4γ − β2 > 0.

The function

f (x) =
1

x − ξ
has the primitive F (x) = ln(|x − ξ|) .

For n > 1, the function

f (x) =
1

(x − ξ)n
has the primitive F (x) = − 1

(n − 1)(x − ξ)n−1
.
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Primitives for manageable pieces, continued

Suppose that 4γ − β2 > 0. Then f (x) = Bx+C
x2+βx+γ

has the primitive

F (x) =
B

2
ln(|x2 + βx + γ|) +

2C − Bβ√
4γ − β2

arctan

(
2x + β√
4γ − β2

)

The case f (x) = (Bx + C )(x2 + βx + γ)−n, with n > 1, is more

complicated. We �rst simplify the denominator:∫
Bx + C

(x2 + βx + γ)n
dx =

∫
B ′y + C ′

(y2 + 1)n
dy

where

λ =
√

γ − β2/4 , y =
x + β/2

λ
, B ′ =

B

λ2n−2
, C ′ =

C − Bβ/2

λ2n−1
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Primitives for manageable pieces, �nished

We compute∫
By + C

(y2 + 1)n
dy =

B

2

∫
2y

(y2 + 1)n
dy + C

∫
1

(y2 + 1)n
dy

= − B

2(n − 1)(y2 + 1)n−1
+ C

∫
1

(y2 + 1)n
dy .

For the remaining integral, we observe that∫
1

(y2 + 1)n
dy =

∫
y2 + 1

(y2 + 1)n
− y2

(y2 + 1)n
dy

=

∫
1

(y2 + 1)n−1
dy −

∫
y2

(y2 + 1)n
dy

Furthermore, using integration by parts on the second integral:∫
y2

(y2 + 1)n
dy = − y

2(n − 1)(y2 + 1)n−1
+

1

2(n − 1)

∫
1

(y2 + 1)n−1
dy
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Summary: Primitives for manageable pieces

The chief di�culty in computing∫
By + C

(y2 + 1)n
dy is computing

∫
1

(y2 + 1)n
dy .

For n > 1, this is not achieved by a simple formula, but by

repeating the same simpli�cation step n − 1 times:∫
1

(y2 + 1)1
dy = arctan(y)∫

1

(y2 + 1)n
dy =

y

2(n − 1)(y2 + 1)n−1

+

(
1− 1

2(n − 1)

)∫
1

(y2 + 1)n−1
dy
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Summary: Integrating rational functions via partial fractions

General procedure for the integration of f (x) = P(x)
Q(x) , k < n.

Determine factorization of the denominator

Q(x) = C (x−ξ1)
k1 · · · (x−ξs)

ks (x2+β1x+γ1)
l1 · · · (x2+βtx+γt)

lt

Determine the coe�cients Ai ,j ,Bi ,j ,Ci ,j in the partial fraction

decomposition of f . (Comparison of coe�cients  solve linear

equations; see examples)

Integrate each term in the partial fraction decomposition
separately:

Use a change of coordinates to simplify the denominator
into (y2 + 1)n

The term By(y2 + 1)−n can be integrated directly
The term C (y2 + 1)−n can be integrated iteratively
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First example

Consider the function f (x) = 4x
x2 + 2x − 3

.

Factorizing the denominator: We compute the roots x1 = −3 and

x2 = 1. Hence x2 + 2x − 3 = (x − 1)(x + 3).

Partial fraction decomposition: We must determine A,B such that

for all x ,

f (x) =
A

x − 1
+

B

x + 3
=

A(x + 3) + B(x − 1)

(x − 1)(x + 3)

Comparing enumerators, this leads to a system of linear equations

4x = x(A + B) + 3A− B ⇔ 4 = A + B , 0 = 3A− B.
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First example

This system of equations is solved by A = 1 and B = 3. Thus

f (x) =
1

x − 1
+

3

x + 3

Integrating the partial fractions yields

F (x) = ln(|x − 1|) + 3 ln(|x + 3|)
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Second example

Consider the function

f (x) =
4

x3 + x2 − x − 1
.

Factorizing the denominator: Since

x3 + x2 = x2(x + 1) , − x − 1 = −1(x + 1) ,

the denominator simpli�es to

x3 + x2 − x − 1 = (x2 − 1)(x + 1) = (x + 1)(x + 1)(x − 1)

= (x + 1)2(x − 1)
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Second example

Partial fraction decomposition: We need A,B,C with

f (x) =
A

x + 1
+

B

(x + 1)2
+

C

x − 1

Multiplying by the denominator of f , we obtain the equation

4 = A(x + 1)(x − 1) + B(x − 1) + C (x + 1)2

= x2(A + C ) + x(B + 2C )− A− B + C .

Comparing the coe�cients for x2, x and 1, we obtain the equations

0 = A + C , 0 = B + 2C , 4 = −A− B + C .

This system has the solution

A = −1 , B = −2 , C = 1 .
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Second example

Therefore,

f (x) =
−1

x + 1
+

−2
(x + 1)2

+
1

x − 1

is the partial fractions decomposition of f .

Integrating the partial fractions yields

F (x) = − ln(|x + 1|)− 2

x + 1
+ ln(|x − 1|) .
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Third example

Consider the function

f (x) =
3x + 2

(x2 + 2x + 5)2

f itself is a partial fraction, hence we directly proceed to compute

its primitive.

Substitution simpli�es the denominator:∫
3x + 2

(x2 + 2x + 5)2
dx =

∫
B ′y + C ′

y2 + 1
dy

where

y =
x + 1

2
, λ =

√
5− 22/4 = 2 , B ′ =

3

4
, C ′ =

−1
8
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Third example

Using the previously derived formulas, we compute∫
B ′y + C ′

(y2 + 1)2
dy = − B ′

2(y2 + 1)
+ C ′

∫
1

(y2 + 1)2
dy

= − B ′

2(y2 + 1)
+ C ′

(
y

2(y2 + 1)
+

1

2

∫
1

(y2 + 1)1
dy

)
= − B ′

2(y2 + 1)
+ C ′

(
y

2(y2 + 1)
+

1

2
arctan(y)

)
Substituting the expressions for y ,B ′,C ′ and simplifying yields∫

3x + 2

(x2 + 2x + 5)2
dx = − 13 + x

8(x2 + 2x + 5)
+

arctan
(
x+1
2

)
16
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Summary

Simple looking integrands may be very hard (or impossible) to

integrate. There is no generally applicable integration method,

there are only techniques.

The most important integration techniques:

Integration by parts
Substitution
Partial fractions (for rational integrands)
Educated guess and veri�cation by di�erentiation
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