Calculus and linear algebra for biomedical engineering Week 12: Integration techniques

Hartmut Führ fuehr@matha.rwth-aachen.de

Lehrstuhl A für Mathematik, RWTH Aachen

January 22, 2009

Polynomials	Integration by parts	Substitution	Partial fractions
Overview			

Integration by parts

Substitution

Integrating rational functions using partial fraction decomposition

Substitution

Motivation

Recall from last week: An integral

$$\int_{a}^{b} f(x) dx$$

can be computed in two steps:

- Determine a primitive F of f;
- Evaluate at the boundaries: $\int_a^b f(x) dx = F|_a^b = F(b) F(a)$.

Unfortunately, there is no simple general procedure for the computation of primitives.

Methods for the simplification of integrals are obtained by reading differentiation rules backwards.

Integrating polynomials

Recall: Monomials $f(x) = x^n$ are easily differentiated: $f'(x) = nx^{n-1}$. Conversely, a primitive of f is obtained as $F(x) = \frac{x^{n+1}}{n+1}$. As a consequence, a primitive of a polynomial

$$f(x) = a_k x^k + a_{k-1} x^{k-1} + \ldots + a_0$$

is obtained as

$$F(x) = \frac{a_k}{k+1} x^{k+1} + \frac{a_{k-1}}{k} x^k + \ldots + a_0 x + c ,$$

where $c \in \mathbb{R}$ is chosen arbitrarily.

Note: The function $F(x) = \frac{x^{s+1}}{s+1}$ is in fact a primitive for $f(x) = x^s$, if $s \in \mathbb{R} \setminus \{-1\}$. The primitive of $f(x) = x^{-1}$ is $F(x) = \ln(|x|)$.

Product rule and integration by parts

Recall: The product rule for derivatives is

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$
.

We use this for the treatment of integrands of the form f'g:

$$\int_{a}^{b} f'(x)g(x)dx = \int_{a}^{b} (fg)'(x)dx - \int_{a}^{b} f(x)g'(x)dx$$
$$= f(b)g(b) - f(a)g(a) - \int_{a}^{b} f(x)g'(x)dx$$

For indefinite integrals, the rule becomes

$$\int f'(x)g(x)dx = fg - \int f(x)g'(x)dx \; .$$

Rule of thumb: Integration by parts is useful whenever fg' is simpler to integrate than f'g.

Example for integration by parts

Example: Using $f(x) = e^x$ and $g(x) = x^2$, we find

$$\int_{0}^{1} e^{x} x^{2} dx = \int_{0}^{1} f'(x)g(x)dx$$
$$= x^{2} e^{x}|_{0}^{1} - \int_{0}^{1} 2x e^{x} dx$$
$$= e - 2 \int_{0}^{1} x e^{x} dx$$

We apply integration by parts again, this time with $f(x) = e^x$ and g(x) = x, to obtain

$$e - 2 \int_0^1 x e^x dx = e - 2(xe^x)|_0^1 + 2 \int_0^1 e^x dx$$

= $e - 2(1 \cdot e^1 - 0e^0) + 2e^x|_0^1 = e - 2$

Further example for integration by parts

Example: We want to determine a primitive for ln(x), by evaluating the integral

$$F(y)=\int_1^y\ln(x)dx\;.$$

Integration by parts of $1 \cdot \ln(x)$ yields

$$\int_{1}^{y} \ln(x) dx = x \ln(x) |_{1}^{y} - \int_{1}^{y} x \frac{1}{x} dx$$
$$= y \ln(y) - \int_{1}^{y} dx$$
$$= y \ln(y) - y + 1$$

Chain rule and substitution

Recall: The chain rule for derivatives states that

$$(f \circ g)'(x) = f'(g(x))g'(x) .$$

This translates to the following integration rule: Substitution rule. Suppose that $g : [a, b] \to \mathbb{R}$ is continuously differentiable, and that $f : g([a, b]) \to \mathbb{R}$ is integrable. Then

$$\int_a^b f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(y)dy \ .$$

Proof: If F is a primitive of f, then H(x) = F(g(x)) is a primitive of f(g(x))g'(x). Therefore

$$\int_{a}^{b} f(g(x))g'(x)dx = H(b) - H(a) = F(g(b)) - F(g(a)) = \int_{g(a)}^{g(b)} f(y)dy$$

Substitution and change of variables

It is customary to think of g(x) as a new variable y replacing x. y ranges from g(a) to g(b) as x ranges from a to b. Moreover,

$$rac{dy}{dx}=g'(x)\;,\;$$
 hence formally $dy=rac{dy}{dx}dx=g'(x)dx$

which results in the formula

$$\int_{a}^{b} f(y) dy = \int_{y(a)}^{y(b)} f(x) dx$$

Rule of thumb: Substitution is useful, whenever the integrand can be written as $g'(x) \cdot H(x)$, where g and H are suitable functions, and H(x) can be expressed in terms of g(x).

Examples for substitution

First example: We wish to compute the integral

$$\int_{0}^{2} x \sin(x^{2}) dx = \frac{1}{2} \int_{0}^{2} \sin(x^{2}) 2x dx = \frac{1}{2} \int_{0}^{2} f(g(x))g'(x) dx ,$$

with $f(y) = \sin(y)$ and $g(x) = x^{2}$. Hence $dy = 2x dx$, and
 $\frac{1}{2} \int_{0}^{2} \sin(x^{2}) 2x dx = \frac{1}{2} \int_{0}^{2^{2}} \sin(y) dy = \frac{1}{2} (1 - \cos(4))$

Second example: Let $f(x) = \frac{g'(x)}{g(x)}$, with g continuously differentiable and non-vanishing on [a, b]. Then

$$\int_{a}^{b} \frac{g'(x)}{g(x)} dx = \int_{a}^{b} \frac{1}{g(x)} g'(x) dx$$

=
$$\int_{g(a)}^{g(b)} \frac{1}{y} dy = \ln(|g(b)|) - \ln(|g(a)|)$$

Example: Substitution for an indefinite integral

We want to determine $F = \int (x+2) \sin(x^2 + 4x - 6) dx$. Substituting

$$y = x^2 + 4x - 6$$
, $dy = (2x + 4)dx$, $(x + 2)dx = \frac{dy}{2}$

we find

$$F(x) = \int f(x) dx = \int \sin(y) \frac{dy}{2} = -\frac{\cos(y)}{2} = -\frac{\cos(x^2 + 4x - 6)}{2}.$$

Remark: The new variable *y* serves as a reminder that we must carry out the substitution before evaluating the integral.

Integration of rational functions

Aim of the following: A recipe for the integration of functions of the type

$$f(x) = \frac{P(x)}{Q(x)} = \frac{s_m x^m + s_{m-1} x^{m-1} + \ldots + s_0}{b_n x^n + b_{n-1} x^{n-1} + \ldots + b_0}$$

Note: One can always write

$$f(x) = c_{\ell} x^{\ell} + \ldots + c_0 + \frac{a_k x^k + a_{k-1} x^{k-1} + \ldots + a_0}{b_n x^n + b_{n-1} x^{n-1} + \ldots + b_0} ,$$

with k < n. We already know how to integrate the polynomial part.

Strategy:

- Write f as a sum of manageable pieces;
- devise a method to integrate the manageable pieces.

Decomposition into manageable pieces

Theorem. Let

$$f(x) = \frac{P(x)}{Q(x)} = \frac{a_k x^k + a_{k-1} x^{k-1} + \ldots + a_0}{b_n x^n + b_{n-1} x^{n-1} + \ldots + b_0} .$$

Then Q has a unique factorization

$$Q(x) = C(x-\xi_1)^{k_1} \cdots (x-\xi_s)^{k_s} (x^2+\beta_1 x+\gamma_1)^{l_1} \cdots (x^2+\beta_t x+\gamma_t)^{l_t}.$$

with suitable numbers $s, t, k_i, l_i \in \mathbb{N}, \xi_i, \beta_i, \gamma_i \in \mathbb{R}$, satisfying in addition

$$4\gamma_i - \beta_i^2 > 0 \ (i = 1, ..., t) \ .$$

This condition is equivalent to requiring that $x^2 + \beta_i x + \gamma_i \neq 0$, for all $x \in \mathbb{R}$ and all i = 1, ..., t.

Decomposition into manageable pieces continued

Let f, P, Q be as on the previous slide, with k < n. Then there exist unique coefficients $A_{i,j}, B_{i,j}, C_{i,j}$ such that

$$f(x) = \frac{A_{1,1}}{(x-\xi_1)^1} + \frac{A_{1,2}}{(x-\xi_1)^2} + \dots + \frac{A_{1,k_1}}{(x-\xi_1)^{k_1}} + \frac{A_{2,1}}{(x-\xi_2)^1} + \frac{A_{2,2}}{(x-\xi_2)^2} + \dots + \frac{A_{2,k_2}}{(x-\xi_2)^{k_2}} + \dots + \frac{A_{s,1}}{(x-\xi_s)^1} + \frac{A_{s,2}}{(x-\xi_s)^2} + \dots + \frac{A_{s,k_s}}{(x-\xi_s)^{k_s}} + \frac{B_{1,1}x + C_{1,1}}{(x^2 + \beta_1 x + \gamma_1)^1} + \dots + \frac{B_{1,l_1}x + C_{1,l_1}}{(x^2 + \beta_1 x + \gamma_1)^{l_1}} + \dots + \frac{B_{t,1}x + C_{t,1}}{(x^2 + \beta_t x + \gamma_t)^1} + \dots + \frac{B_{t,l_t}x + C_{t,l_t}}{(x^2 + \beta_t x + \gamma_t)^{l_t}}$$

This sum is called partial fraction decomposition of f.

Example

Suppose that

$$f(x) = \frac{1+x^2}{(x+1)^3(x^2+x+1)^2}$$

Then the partial fraction decomposition of f is of the form

$$f(x) = \frac{A_1}{x+1} + \frac{A_2}{(x+1)^2} + \frac{A_3}{(x+1)^3} + \frac{B_1x + C_1}{x^2 + x + 1} + \frac{B_2x + C_2}{(x^2 + x + 1)^2}$$

Hence we need to determine 7 coefficients, A_1, \ldots, C_2 .

Note: The enumerator does not influence the form of the partial fraction decomposition. It is needed to determine the coefficients A_1, A_2, \ldots

Primitives for manageable pieces

We still need primitives for the partial fractions:

$$\frac{A}{(x-\xi)^n}, \frac{Bx+C}{(x^2+\beta x+\gamma)^n}$$

$$\beta^2 > 0$$

with $4\gamma - \beta^2 > 0$.

• The function

$$f(x) = rac{1}{x-\xi}$$
 has the primitive $F(x) = \ln(|x-\xi|)$.

• For n > 1, the function

$$f(x)=rac{1}{(x-\xi)^n}$$
 has the primitive $F(x)=-rac{1}{(n-1)(x-\xi)^{n-1}}$.

Primitives for manageable pieces, continued

Suppose that $4\gamma - \beta^2 > 0$. Then $f(x) = \frac{Bx+C}{x^2 + \beta x + \gamma}$ has the primitive

$$F(x) = rac{B}{2} \ln(|x^2 + eta x + \gamma|) + rac{2C - Beta}{\sqrt{4\gamma - eta^2}} \arctan\left(rac{2x + eta}{\sqrt{4\gamma - eta^2}}
ight)$$

The case $f(x) = (Bx + C)(x^2 + \beta x + \gamma)^{-n}$, with n > 1, is more complicated. We first simplify the denominator:

$$\int \frac{Bx+C}{(x^2+\beta x+\gamma)^n} dx = \int \frac{B'y+C'}{(y^2+1)^n} dy$$

where

$$\lambda = \sqrt{\gamma - \beta^2/4} \ , \ y = \frac{x + \beta/2}{\lambda} \ , \ B' = \frac{B}{\lambda^{2n-2}} \ , \ C' = \frac{C - B\beta/2}{\lambda^{2n-1}}$$

Primitives for manageable pieces, finished

We compute

$$\int \frac{By+C}{(y^2+1)^n} dy = \frac{B}{2} \int \frac{2y}{(y^2+1)^n} dy + C \int \frac{1}{(y^2+1)^n} dy = -\frac{B}{2(n-1)(y^2+1)^{n-1}} + C \int \frac{1}{(y^2+1)^n} dy .$$

For the remaining integral, we observe that

$$\int \frac{1}{(y^2+1)^n} dy = \int \frac{y^2+1}{(y^2+1)^n} - \frac{y^2}{(y^2+1)^n} dy$$
$$= \int \frac{1}{(y^2+1)^{n-1}} dy - \int \frac{y^2}{(y^2+1)^n} dy$$

Furthermore, using integration by parts on the second integral:

$$\int \frac{y^2}{(y^2+1)^n} dy = -\frac{y}{2(n-1)(y^2+1)^{n-1}} + \frac{1}{2(n-1)} \int \frac{1}{(y^2+1)^{n-1}} dy$$

Summary: Primitives for manageable pieces

The chief difficulty in computing

$$\int rac{By+C}{(y^2+1)^n} dy$$
 is computing $\int rac{1}{(y^2+1)^n} dy$.

For n > 1, this is not achieved by a simple formula, but by repeating the same simplification step n - 1 times:

$$\int \frac{1}{(y^2+1)^1} dy = \arctan(y)$$

$$\int \frac{1}{(y^2+1)^n} dy = \frac{y}{2(n-1)(y^2+1)^{n-1}}$$

$$+ \left(1 - \frac{1}{2(n-1)}\right) \int \frac{1}{(y^2+1)^{n-1}} dy$$

Summary: Integrating rational functions via partial fractions

General procedure for the integration of $f(x) = \frac{P(x)}{Q(x)}$, k < n.

• Determine factorization of the denominator

$$Q(x) = C(x-\xi_1)^{k_1}\cdots(x-\xi_s)^{k_s}(x^2+\beta_1x+\gamma_1)^{l_1}\cdots(x^2+\beta_tx+\gamma_t)^{l_t}$$

- Determine the coefficients A_{i,j}, B_{i,j}, C_{i,j} in the partial fraction decomposition of f. (Comparison of coefficients → solve linear equations; see examples)
- Integrate each term in the partial fraction decomposition separately:
 - Use a change of coordinates to simplify the denominator into $(y^2 + 1)^n$
 - The term $By(y^2+1)^{-n}$ can be integrated directly
 - The term $C(y^2+1)^{-n}$ can be integrated iteratively

First example

Consider the function
$$f(x) = \frac{4x}{x^2 + 2x - 3}$$
.

Factorizing the denominator: We compute the roots $x_1 = -3$ and $x_2 = 1$. Hence $x^2 + 2x - 3 = (x - 1)(x + 3)$.

Partial fraction decomposition: We must determine A, B such that for all x,

$$f(x) = \frac{A}{x-1} + \frac{B}{x+3} = \frac{A(x+3) + B(x-1)}{(x-1)(x+3)}$$

Comparing enumerators, this leads to a system of linear equations

$$4x = x(A+B) + 3A - B \Leftrightarrow 4 = A + B , \ 0 = 3A - B.$$

This system of equations is solved by A = 1 and B = 3. Thus

$$f(x) = \frac{1}{x-1} + \frac{3}{x+3}$$

Integrating the partial fractions yields

$$F(x) = \ln(|x - 1|) + 3\ln(|x + 3|)$$

Substitution

Second example

Consider the function

$$f(x) = \frac{4}{x^3 + x^2 - x - 1} \; .$$

Factorizing the denominator: Since

$$x^{3} + x^{2} = x^{2}(x + 1)$$
, $-x - 1 = -1(x + 1)$,

the denominator simplifies to

$$x^{3} + x^{2} - x - 1 = (x^{2} - 1)(x + 1) = (x + 1)(x + 1)(x - 1)$$

= (x + 1)²(x - 1)

Second example

Partial fraction decomposition: We need A, B, C with

$$f(x) = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x-1}$$

Multiplying by the denominator of f, we obtain the equation

$$4 = A(x+1)(x-1) + B(x-1) + C(x+1)^2 = x^2(A+C) + x(B+2C) - A - B + C .$$

Comparing the coefficients for x^2 , x and 1, we obtain the equations

$$0 = A + C$$
, $0 = B + 2C$, $4 = -A - B + C$.

This system has the solution

$$A = -1 \; , \; B = -2 \; , \; C = 1 \; .$$

Second example

Therefore,

$$f(x) = \frac{-1}{x+1} + \frac{-2}{(x+1)^2} + \frac{1}{x-1}$$

is the partial fractions decomposition of f.

Integrating the partial fractions yields

$$F(x) = -\ln(|x+1|) - \frac{2}{x+1} + \ln(|x-1|) .$$

Substitution

Third example

Consider the function

$$f(x) = \frac{3x+2}{(x^2+2x+5)^2}$$

f itself is a partial fraction, hence we directly proceed to compute its primitive.

Substitution simplifies the denominator:

$$\int \frac{3x+2}{(x^2+2x+5)^2} dx = \int \frac{B'y+C'}{y^2+1} dy$$

where

$$y = \frac{x+1}{2}$$
, $\lambda = \sqrt{5-2^2/4} = 2$, $B' = \frac{3}{4}$, $C' = \frac{-1}{8}$

Substitution

Third example

Using the previously derived formulas, we compute

$$\int \frac{B'y+C'}{(y^2+1)^2} dy = -\frac{B'}{2(y^2+1)} + C' \int \frac{1}{(y^2+1)^2} dy$$
$$= -\frac{B'}{2(y^2+1)} + C' \left(\frac{y}{2(y^2+1)} + \frac{1}{2} \int \frac{1}{(y^2+1)^1} dy\right)$$
$$= -\frac{B'}{2(y^2+1)} + C' \left(\frac{y}{2(y^2+1)} + \frac{1}{2} \operatorname{arctan}(y)\right)$$

Substituting the expressions for y, B', C' and simplifying yields

$$\int \frac{3x+2}{(x^2+2x+5)^2} dx = -\frac{13+x}{8(x^2+2x+5)} + \frac{\arctan\left(\frac{x+1}{2}\right)}{16}$$

Summary

- Simple looking integrands may be very hard (or impossible) to integrate. There is no generally applicable integration method, there are only techniques.
- The most important integration techniques:
 - Integration by parts
 - Substitution
 - Partial fractions (for rational integrands)
 - Educated guess and verification by differentiation