# Calculus and linear algebra for biomedical engineering Week 14: Review of selected topics

### Hartmut Führ fuehr@matha.rwth-aachen.de

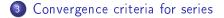
Lehrstuh A für Mathematik, RWTH Aachen

February 2, 2009









### Hesse normal form: Definition

The Hesse normal form is a convenient way to describe

- lines in  $\mathbb{R}^2$ , or
- planes in  $\mathbb{R}^3$ .

Theorem. Let  $d \in \{2,3\}$ , let  $\mathbb{S} \subset \mathbb{R}^d$  be a line (for d = 2) or plane (for d = 3). Then there exist unique  $\mathbf{n} \in \mathbb{R}^d$  with |n| = 1 and  $r \ge 0$  such that

$$\mathbb{S} = \{\mathbf{x} \in \mathbb{R}^d : \mathbf{x} \cdot \mathbf{n} = r\}$$
.

The vector  $\mathbf{n}$  is called normal vector of  $\mathbb{S}$ .

Only exception to uniqueness: If r = 0, then both **n** and  $-\mathbf{n}$  give the same set S.

### Computing Hesse normal form: Line case

Given a line  $\mathbb{L} \subset \mathbb{R}^2$  in parametric form

$$\mathbb{L} = \{ \mathbf{c} = \mathbf{a} + s\mathbf{b} : s \in \mathbb{R} \}$$
,

with  $\mathbf{b} = (b_1, b_2)^T$ , we compute the Hesse normal form by the following procedure:

 Determine the two possible candidates for the normal vector, namely

$$\mathbf{n}_{\pm} = \pm \frac{(b_2, -b1)^T}{|\mathbf{b}|}$$

• Pick **n** such that  $\mathbf{n} \cdot \mathbf{a} \ge \mathbf{0}$ .

• Let  $r = \mathbf{n} \cdot \mathbf{a}$ .

### Computing Hesse normal form: Line case

Given a line  $\mathbb{L} \subset \mathbb{R}^2$ , defined implicitly via

$$\mathbb{L} = \{(x_1, x_2)^T \in \mathbb{R}^2 : b_1 x_1 + b_2 x_2 = c\}$$
,

we compute the Hesse normal form by the following procedure:

• Determine the two possible candidates for n, namely

$$\mathsf{n}_{\pm} = \pm rac{1}{|(b_1, b_2)^{\mathcal{T}}|} (b_1, b_2)^{\mathcal{T}}$$
 .

- Pick  $\mathbf{n}_+$  if  $c \ge 0$ , otherwise  $\mathbf{n}_-$ .
- Let r = |c|/|b|.

### Computing Hesse normal form: Plane case

Given a plane  $\mathbb{P} \subset \mathbb{R}^3$  in parametric form

$$\mathbb{P} = \{\mathbf{x} = \mathbf{z} + s\mathbf{a} + t\mathbf{b} : s, t \in \mathbb{R}\} ,$$

we compute the Hesse normal form by the following procedure:

• Determine the possible candidates for **n** via the normalized cross product of **a** and ,

$$\mathbf{n} = \pm \frac{1}{|\mathbf{a} \times \mathbf{b}|} \mathbf{a} \times \mathbf{b}$$

- Pick **n** such that  $\mathbf{n} \cdot \mathbf{z} \ge \mathbf{0}$ .
- Let  $r = \mathbf{n} \cdot \mathbf{z}$ .

### Computing Hesse normal form: Plane case

Given a plane  $\mathbb{P} \subset \mathbb{R}^3$ , defined implicitly via

$$\mathbb{P} = \{ (x_1, x_2, x_3)^T \in \mathbb{R}^3 : b_1 x_1 + b_2 x_2 + b_3 x_3 = c \} ,$$

we compute the Hesse normal form by the following procedure:

• Determine the two possible candidates for **n**, namely

$$\mathbf{n}_{\pm} = \pm \frac{1}{|(b_1, b_2, b_3)^T|} (b_1, b_2, b_3)^T$$

- Pick  $\mathbf{n}_+$  if  $c \ge 0$ , otherwise  $\mathbf{n}_-$ .
- Let r = |c|/|b|.

# Application of HNF: Computing distances

Given a set 
$$\mathbb{S} \subset \mathbb{R}^d$$
  $(d = 2, 3)$  in HNF,

$$\mathbb{S} = \{\mathbf{x} \in \mathbb{R}^d : \mathbf{x} \cdot \mathbf{n} = r\}$$
.

and a point  $\mathbf{x} \in \mathbb{R}^d$ , the shortest distance of  $\mathbf{x}$  to  $\mathbb S$  is computed as

 $\operatorname{dist}(\mathbf{x}, \mathbb{S}) = |\mathbf{x} \cdot \mathbf{n} - c|$ .

### Application of HNF: Intersection of lines or planes

Let  $\mathbb{S}_1, \mathbb{S}_2 \subset \mathbb{R}^d$ , with  $d \in \{2, 3\}$ , be given in HNF with

$$\mathbb{S}_i = \{\mathbf{x} \in \mathbb{R}^d : \mathbf{x} \cdot \mathbf{n}_i = r_i\}$$
.

#### Then

- $\mathbb{S}_1 = \mathbb{S}_2$  if and only if either  $r_1 = r_2 \neq 0$  and  $\mathbf{n}_1 = \mathbf{n}_2$ , or if  $r_1 = r_2 = 0$ , and  $\mathbf{n}_1 = \pm \mathbf{n}$ .
- $\mathbb{S}_1 \cap \mathbb{S}_2$  is a single point (for d = 1) or a line (for d = 2) if and only if  $\mathbf{n}_1 \neq \pm \mathbf{n}_2$ .
- In all remaining cases,  $\mathbb{S}_1 \cap \mathbb{S}_2 = \emptyset$ .

### Necessary convergence criteria

# Let $(x_k)_{k\in\mathbb{N}}$ be a sequence of real numbers.

Cauchy criterion:

 $(x_k)_{k\in\mathbb{N}}$  converges if and only if

$$|x_k - x_n| 
ightarrow 0$$
 as  $\min(k, n) 
ightarrow \infty$ 

### • Boundedness:

If  $(x_k)_{k \in \mathbb{N}}$  converges, it is bounded.

- The boundedness criterion follows from the Cauchy criterion.
- Violation of necessary criteria for convergence is a sufficient criterion for divergence.
- A bounded sequence that is not Cauchy (and thus divergent):

$$x_k = (-1)^k \; .$$

# Sufficient conditions for convergence

- Cauchy criterion
- If  $(x_k)_{k \in \mathbb{N}}$  is bounded and monotonic, it converges.
- Convergence and algebraic operations: Sums, products, differences, quotients (if defined) of convergent sequences are convergent again, and the limits are obtained by the same operation: E.g., if

$$x = \lim_{k o \infty} x_k \, \, , \, \, y = \lim_{k o \infty} y_k$$

then

$$x + y = \lim_{k \to \infty} x_k + y_k$$
,  $xy = \lim_{k \to \infty} x_k y_k$ 

etc.

• Continuity:

If  $(x_k)_{k\to\infty} \subset D$  with  $\lim_{k\to\infty} x_k \in D$ , and  $f: D \to \mathbb{R}$  is continuous, then

$$\lim_{k\to\infty}f(x_k)=f(x)\;.$$

### Known limits

• For  $\alpha \in \mathbb{R}$ ,

$$\lim_{k \to \infty} k^{\alpha} = \begin{cases} \infty & \alpha > 0\\ 1 & \alpha = 0\\ 0 & \alpha < 0 \end{cases}$$

• 
$$\lim_{k\to\infty} \left(1+rac{1}{k}\right)^k = e.$$

- Given polynomials P, Q, one can determine  $\lim_{k\to\infty} \frac{P(k)}{Q(k)}$  by comparing the degrees of the polynomials.
- $\lim_{k\to\infty}rac{k^{lpha}}{c^k}=$  0, for all c>1 and all  $lpha\in\mathbb{R}.$

• 
$$\lim_{k\to\infty} \frac{c^k}{k!} = 0$$
, for all  $c \in \mathbb{R}$ 

• 
$$\lim_{k\to\infty} \sqrt[k]{c} = 1$$
, for all  $c > 0$ .

• 
$$\lim_{k\to\infty} \sqrt[k]{k} = 1$$
.

### Convergence criteria for series

• Necessary Criterion: If  $\sum_{k=0}^{\infty} x_k = x \in \mathbb{R}$ , then

$$\lim_{k\to\infty} x_k = 0$$

• This criterion is not sufficient:

$$\lim_{k
ightarrow\infty}k^{-1}=0$$
 , but  $\sum_{k=1}^{\infty}k^{-1}=\infty$  .

# Sufficient criteria for series convergence

- Absolute convergence: If  $\sum_{k=1}^{\infty} |x_k| < \infty$ , then  $\sum_{k=1}^{\infty} x_k$  converges, with  $|\sum_{k=1}^{\infty} x_k| \le \sum_{k=1}^{\infty} |x_k|$ .
- Majorant criterion: If  $\sum_{k=0}^{\infty} z_k$  is absolutely convergent with  $|x_k| < |z_k|$ , then  $(x_k)_{k \in \mathbb{N}}$  converges absolutely.
- Quotient criterion: If there exists c with 0 < c < 1 and M > 0, such that for all n > M,  $\left|\frac{x_{n+1}}{x_n}\right| < c$ , then  $\sum_{n=0}^{\infty} x_n$  converges absolutely.
- Leibniz criterion: Suppose that the sequence  $(x_n)_{n \in \mathbb{N}}$ converges to zero, and fulfills  $|x_{n+1}| < |x_n|$  for all n, as well as  $x_{n+1} \cdot x_n < 0$ . Then  $\sum_n x_n$  converges.
- Algebraic operations: Let  $x_k = y_k + sz_k$ , for all  $k \in \mathbb{N}$ ), with convergent series  $\sum_{k=1}^{\infty} y_k$  and  $\sum_{k=1}^{\infty} z_k$ , as well as  $s \in \mathbb{R}$ .

Then 
$$\sum_{k=1}^{\infty} x_k = \left(\sum_{k=1}^{\infty} y_k\right) + s\left(\sum_{k=1}^{\infty} z_k\right)$$

### Known series

• Geometric series: For |q| < 1,

$$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$$

 $\sum_{k=1}^{\infty} k^{\alpha}$ 

• The series

converges precisely for  $\alpha < -1$ . The divergent series corresponding to  $\alpha = -1$  is called harmonic series.

• The exponential series is given by

$$\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} ,$$

where  $x \in \mathbb{R}$ , convergent for every choice of x. (For further examples, see lecture on power series.)