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Motivation

Sample problem: Suppose we are given two solutions of a certain

chemical in water, one with a 2 % concentration, the other with a

10% concentration. Our aim is to mix the two solutions in such a

way that we obtain 3 liters with a 3 % concentration.

Mathematical Formulation. Let x denote the quantity of 2 %

concentration and y the quantity of 10 % concentration that we

use for mixing.

The fact that we want three litres of the �nal product gives rise to

the equation

x + y = 3 (1)
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Motivation

Moreover, the amount of substance contributed by quantity x with

a 2 % concentration is x · 0.02, whereas quantity y of a 10 %

concentration contributes y · 0.10. The concentration after mixing

is obtained by dividing this by the total amount of solution, 3 litres,

which results in the equation

x · 0.02/3 + y · 0.10/3 = 0.03 (2)

We are thus looking for solutions x , y of the system of linear

equations (1) and (2).

Solution. We solve (1) for x , getting x = 3− y . Plugging this into

(2) gives

(3− y) · 0.02/3 + y · 0.10/3 = 0.03⇔ y = 0.375 .

Hence mixing 2.625 litres of the 2 % solution and 0.375 litres of

the 10 % is the only way of achieving the desired quantity and

concentration.
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General systems of linear equations

A system of linear equations with m equations and n variables is a

system

a11x1 + a12x2 + . . . + a1nxn = y1

a21x1 + a22x2 + . . . + a2nxn = y2
...

...
...

am1x1 + am2x2 + . . . amnxn = ym

Here aij ∈ R are called the coe�cients of the system, y1, . . . , ym is

the right-hand side. Both the coe�cients and the right-hand side

are known.

By contrast, x1, . . . , xn are the variables. Solutions of the system

are all possible vectors (x1, . . . , xn)
T such that all of the above

equations are ful�lled simultaneously.
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Central task: Finding all solutions

Given a system of linear equations as on the previous slide, we want

to �nd the set of all solutions, given as

S = {(x1, . . . , xn)T : for all l = 1, . . . ,m : al1x1 + . . . + alnxn = yl}

Any such set will be either empty, contain a single point, or

in�nitely many of them. In the latter case, we want a

parametrization of S. This parametrization will usually depend on

certain free variables.

There is no simple formula for these sets. We describe a

systematically applicable method for the computation of S.
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Example: Solving a single linear equation

Consider the equation x + y − z = 5

How to get all solutions:

Insert arbitrary real numbers for y , z

Solving for x gives x = 5− y + z

Hence, the set of all solutions is

S = {(5 + y − z , y , z) : y , z ∈ R} .

Observations:

The set of solutions is parameterized by two free variables

y , z ∈ R; i.e., it is a plane in R3.

Solving for a di�erent variable (e.g., y) results in the same set

of solutions, only in a di�erent parameterization.
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Example: Solving a system of two linear equations

Consider the system

x + y − z = 5

x − y − 2z = 3

Substituting the solution x = 5− y + z for the �rst into the second

equation provides

5− y + z − y − 2z = 3⇔ −2y − z = −2 .

Here, we may choose any value for z , and obtain y = 1− z
2
.

Plugging this into the equation for x gives x = 5− y + z = 4 + 3z
2
.

Thus, the set of all solutions is

S =

{(
4 +

3z

2
, 1− z

2
, z

)T

: z ∈ R

}
.
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Observations

The set of solutions is parameterized by one free variable

z ∈ R; i.e., it is a line in R3.

Solving for a di�erent variable (e.g., y) results in the same set

of solutions, only in a di�erent parameterization.

⇒ Rules of thumb

Each equation �xes one variable

The solutions of a system of m equations with n variables is

parameterized by n −m free variables.
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Exceptions to the rule

The system

x + y − z = 5

2x + 2y − 2z = 10

is redundant: Two equations, three variables, but two degrees

of freedom.

The system

x + y − z = 5

2x + 2y − 2z = 11

is contradictory: It has no solution.

For larger numbers of variables, these cases are not easily

recognized.
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Matrix calculus

E�ective, systematic notation for the treatment of linear equations.

Matrix by vector multiplication

Systems of linear equations and matrix-by-vector multiplication

Simple matrices and their solutions

Solving linear systems of equations via the Gauss algorithm
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De�nition of matrices

De�nition. A m × n-matrix in R is a mapping

A : {1, . . . ,m} × {1, . . . , n} → R, denoted as

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 = (aij)i=1,...,m
j=1,...,n

= (aij) .

In other words: An m × n matrix is a rectangular array of numbers.

m = number of lines in A = length of columns in A

n = number of columns in A = length of lines in A

The space of m × n-matrices is denoted by Rm×n.
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Multiplying a matrix with a column vector

De�nition. Given A ∈ Rm×n and x ∈ Rn, the column vector

y = A · x is de�ned by

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 ·


x1
x2
...

xn



=


a11x1 + a12x2 + . . . + a1nxn
a21x1 + a22x2 + . . . + a2nxn

...

...

am1x1 + am2x2 + . . . + amnxn





Linear systems of equations Simple examples Matrices Gauss algorithm

Rules for the matrix-vector product

The product of a matrix A ∈ Rk×m with a column vector x ∈ Rn is

only de�ned if m = n, i.e., if the length of the rows in A equals the

length of x.

Main Property: Linearity.

Let A ∈ Rm×n, x, y ∈ Rn, and s, t ∈ R. Then

A · (sx + ty) = sA · x + tA · y

As before, the �·� is sometimes omitted where no confusion can

arise.
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Linear systems of equations and matrices

Let A ∈ Rm×n and y ∈ Rm. The matrix-vector equation

A · x = y

is the short-hand form of the system of equations

a11x1 + a12x2 + . . . + a1nxn = y1

a21x1 + a22x2 + . . . + a2nxn = y2
...

...
...

am1x1 + am2x2 + . . . + amnxn = ym

Each column corresponds to an unknown, each row corresponds to

an equation.

Alternatively, one represents the system by the m × (n + 1)-matrix

A′ = (A|y) obtained by appending y as n + 1st column to A.
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An example

The linear system

x1 + x2 − x3 = 5

x1 − x2 − 2x3 = 3

is equivalent to

(
1 1 −1
1 −1 −2

)
·

 x1
x2
x3

 =

(
5

3

)

alternatively represented by the matrix

A′ =

(
1 1 −1 5

1 −1 −2 3

)
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Homogeneous linear equations

Let A ∈ Rm×n, and y ∈ Rm. The equation

A · x = y

is called homogeneous equation if y = 0, and inhomogeneous

otherwise.

Main property of homogeneous equations: If x, z solve the

homogeneous equation A · x = 0, the same is true for sx + tz,

s, t ∈ R arbitrary: By linearity of the matrix-vector product,

A · (sx + tz) = sA · x + tA · z = s0 + t0 = 0 .
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Solving homogeneous and inhomogeneous equations

Theorem 1.

Let y ∈ Rm and A ∈ Rm×n. Let

S(A, y) = {x ∈ Rn : Ax = y}
S(A, 0) = {x ∈ Rn : Ax = 0}

i.e., the sets of all solutions to the inhomogeneous and

homogeneous system, respectively. Suppose that z ∈ S(A, y). Then

S(A, y) = {z + x0 : x0 ∈ S(A, 0)}

Hence: In order to �nd all solutions of the equation Ax = y,

�nd one such solution z, and

determine all solutions x0 of the associated homogeneous

system Ax = 0.
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Gauss elimination: Motivation

A systematic solution of linear systems of equations relies on

Simpli�cation (Gaussian elimination)

Substitution

De�nition. Let A be an m × n-matrix. A is called simple if there

exist indices

1 ≤ l ≤ m and 1 ≤ i1 < i2 < . . . < il ≤ n

such that

aj ,ij 6= 0 for j = 1, . . . , l

aj ,i = 0 if i < ij or j > l

Informally: ij is the index of the �rst non-zero entry in the jth line.
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Illustration of simple matrices

General form:

A =



0 . . . 0 a1,i1 a1,i1+1 . . . . . . . . . . . . a1,n
0 . . . . . . . . . . . . 0 a2,i2 a2,i2+1 . . . . . . a2,n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . . . . 0 alil . . . al ,n
0 . . . . . . . . . . . . . . . . . . . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . . . . . . . . . . . . . 0


A concrete example:

A =


1 3 0 0 −1 7

0 0 2 1 π2 4

0 0 0 2 0 3

0 0 0 0 0 −2
0 0 0 0 0 0


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Solving a simple system of equations

Consider the equation

A · x = y

with A an m × n matrix and y ∈ Rm.

Consider the extended m × (n + 1) matrix A′ = (A|y) of the
system. Assume that it is simple, with indices

1 ≤ l ≤ m and 1 ≤ i1 < i2 < . . . < il ≤ n + 1

of the �rst nonzero entries.

Two cases can arise for the last equation:
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Looking at the last equation

First case: il = n + 1. This means that the last nonzero equation

reads

0x1 + . . . + 0xn = bl ,

with bl 6= 0. This does not have a solution, hence the system is not

solvable.

Second case: Here, the last nonzero equation is

al ,il xil + . . . al ,nxn = bl

with al ,il 6= 0. We can therefore divide by al ,il and solve for xil :

xil =
bl

al ,il
−

al ,il+1

al ,il
− . . .−

al ,n

al ,il
xn .

Here xil+1, . . . , xn are free parameters of the solution.
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Solving a simple system of equations

Having solved the last nonzero equation, we substitute the

expression for xil and the free parameters xil+1, . . . , xn into the

second-to-last equation

al−1,il−1
xil−1

+ . . . + al−1,nxn = bl−1 .

We can now solve this equation for xil−1
, using

al−1,il−1
6= 0 and il−1 < il .

Note that the latter inequality means that the variable xil−1
did not

occur in the equation we solved �rst.

Working our way up through all equations, we obtain all solutions

of the system.
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General result: Solvability of simple equation systems

Theorem 2.

Let A be an m × n matrix, y ∈ Rm. Denote by A′ = (A|y) the
extended matrix. Assume that A′ is simple, with l ′ nonzero rows.

Then A is simple, with l nonzero rows.

If l 6= l ′, the equation Ax = y has no solution x ∈ Rn.

If l = l ′, the equation Ax = y has a solution. The general

solution of the equation has n − l free parameters.

 Informally: If we have a simple system A′,

solvability can be decided by counting nonzero rows of A,A′;

the rule of thumb, �one nonzero equation �xes one variable� is

applicable.

De�nition. The number l from the Theorem is called rank of the

linear system.
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Simplifying systems of linear equations

Theorem 3. Let A′,B ′ be the extended matrices of systems of

linear equations. Assume that B ′ is obtained from A′ by one of the

following operations

Interchanging two lines of A′.

Multiplying a line of A′ by a nonzero scalar.

Adding a scalar multiple of one line to another.

I.e., if b1, . . . , bm denote the lines of B ′, and a1, . . . , am the

lines of A′, then there exists 1 ≤ k , l ≤ m, with k 6= l , and

s ∈ R such that

bi = ai for i 6= l , bl = al + sak

Then every solution of the system A′ is also a solution for B ′ and
vice versa.
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Solving arbitrary systems of equations

Remark. The operations from Theorem 3. are called basic

transformations. They can be applied repeatedly without changing

the set of solutions.

Theorem 4. For every matrix A there is a simple matrix B

obtainable by �nitely many basic transformations from A.

Corollary. Combining Theorems 2 and 3, the set of solutions of a

linear system of equations A′ = (A|y) is computable in �nitely

many steps.

The Gauss algorithm is a method to systematically convert an

arbitrary system of linear equations to a simple one, and thus to

solve linear systems of equations.
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The Gauss algorithm

Given a matrix A, perform the following steps:

1 If A is the zero matrix, we are done. Otherwise, go to step 2.

2 Locate the �rst nonzero column from the left. One line has a

nonzero entry in this column. If necessary, swap this line with

the �rst line.

3 After step 2, the �rst nonzero entry of the �rst line is in the

�rst nonzero column. Using this entry, subtract suitable

multiples of the �rst line from the lines below to eliminate all

other entries in that column.

4 After step 3, the matrix B consisting of the lines below the

�rst line has at least one more zero column than A. Continue

with step 1, with the smaller matrix B instead of A.
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Summary

Matrices allow a compact notation for writing and solving

linear equations.

General procedure for solving systems of linear equations.

Write a linear system Ax = y in extended matrix form
A

′ = (A|y).
Using basic transformations, compute simple matrix B ′ having
the same set of solutions as A′ ( Gauss algorithm)
Using Theorem 2, determine all solutions for the matrix B ′.

Important de�nitions: Matrix-by-vector product, simple

matrices, the rank of a matrix, homogeneous equations, free

variables in the solution of systems of linear equation, simple

transformations, Gauss algorithm
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