Calculus and linear algebra for biomedical engineering Week 5: Sequences, series, and their limits

Hartmut Führ fuehr@matha.rwth-aachen.de

Lehrstuhl A für Mathematik, RWTH Aachen

November 7, 2008

Overview

- Sequences
- 2 Limits
- Computing limits
- 4 Series

Sequences Limits Computing limits Series

Motivation

We want to study the growth of a culture of bacteria. We are given an initial population, consisting of N bacteria, and our aim is to predict the number of bacteria after one time unit.

Underlying assumption: At any given time, the reproduction rate equals one. That is, assuming that the population were constant over a time interval of length ϵ , the population size will have changed by $N \cdot \epsilon$.

However, the population size will not be constant over any time interval. In order to obtain a good approximation, we subdivide the time interval into n subintervals of equal length, introducing $t_0=0, t_1=\frac{1}{n},\ldots,t_n=1$.

Motivation

We then obtain the following approximations of the population size after each subinterval:

at time
$$t_1$$
 : $N\cdot (1+rac{1}{n})$, at time t_2 : $N\cdot (1+rac{1}{n})^2$, \ldots , at time t_n = 1 : $N\cdot \left(1+rac{1}{n}\right)^n$

Each step depends on the assumption that the population size is constant in the time between t_i and t_{i+1} .

This assumption should be increasingly accurate as the intervals become small (i.e., as n becomes large)

Motivation

We derived $N \cdot \left(1 + \frac{1}{n}\right)^n$ as an estimate of the population size at time 1. As $n \to \infty$, we expect the estimate to be arbitrarily close to the true value:

That is, we are interested in the limit of

$$x_n = N \cdot \left(1 + \frac{1}{n}\right)^n \quad ,$$

as $n \to \infty$.

A second example

Recall that calculators use rational approximations of real numbers. Thus we need a mechanism to compute such approximations. The following is a simple scheme to approximate $\sqrt{2}$:

- Start with $x_0 = 1$.
- Given a rational x_n , we define

$$x_{n+1} = \frac{x_n + 2/x_n}{2} \in \mathbb{Q} .$$

Then one can prove that for all $n \in \mathbb{N}_0$,

$$1 \le x_n < x_{n+1} < \sqrt{2},$$

i.e., x_{n+1} is indeed closer to $\sqrt{2}$ than x_n . Moreover, one expects that for any predefined precision ϵ , sufficiently many repetitions yield a value that approximates $\sqrt{2}$ within ϵ .

Sequences

Definition. A sequence of numbers is a rule assigning each natural number n a real number $\mathbf{x}_n \in \mathbb{R}$. (Also called a mapping $\mathbb{N}_0 \to \mathbb{R}$). It is denoted as

$$(x_n)_{n\in\mathbb{N}_0}$$
, or x_0, x_1, \ldots ,

Examples:

- Let $x_n = r$, for all $n \in \mathbb{N}$ and some fixed $r \in \mathbb{R}$. This defines a constant sequence.
- Letting $x_n = 2n + 1$, for $n \in \mathbb{N}_0$, one obtains the sequence $1, 3, 5, 7, \ldots$ of odd numbers, sorted in ascending order.
- $x_n = n^{\alpha}$, for $n \in \mathbb{N}_0$, and fixed α
- Example of a recursively defined series: Define $(x_n)_{n\in\mathbb{N}_0}$ by

$$x_0 = 1 , \ x_{n+1} = \frac{x_n + 2/x_n}{2} \ (\text{for } n \in \mathbb{N}_0)$$

Sequences Limits Computing limits Series

Properties of sequences

Definition. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence. The sequence is called

- **1** (monotonically) decreasing if for all $n \in \mathbb{N}$, $x_{n+1} \le x_n$;
- ② (monotonically) increasing if for all $n \in \mathbb{N}$, $x_{n+1} \ge x_n$;
- monotonic if it is either an increasing or a decreasing sequence;
- **o** bounded from below if for some $y \in \mathbb{R}$ and all $n \in \mathbb{N}$, $y \le x_n$;
- **5** bounded from above if for some $y \in \mathbb{R}$ and all $n \in \mathbb{N}$, $y \ge x_n$;
- **1** bounded if it is both bounded from above and from below.

Moreover the sequence is called strictly decreasing (or increasing), if $x_{n+1} < x_n$ holds (resp. $x_{n+1} > x_n$) for all n.

Examples

- Obviously, a decreasing sequence is bounded from above (e.g., by $y = x_0$). Likewise, an increasing sequence is bounded from below.
- The sequences $x_n = 2n + 1$ $(n \in \mathbb{N}_0)$ and $y_n = n^2$ $(n \in \mathbb{N}_0)$ are bounded from below, strictly increasing and not bounded from above.
- The sequence $x_n = \frac{1}{n}$ $(n \in \mathbb{N})$ is strictly decreasing, and bounded both from above and below: $0 < x_n < 1$.
- The sequence $(x_n)_{n\in\mathbb{N}}$, where $x_n=(1+\frac{1}{n})^n$, is increasing and bounded from above.
- The sequence $(x_n)_{n\in\mathbb{N}}$, defined by

$$x_0 = 1$$
, $x_{n+1} = \frac{x_n + 2/x_n}{2}$ $(n \in \mathbb{N}_0)$

fulfills $1 < x_n < x_{n+1} < \sqrt{2}$. Hence it is monotonic and bounded.

Limit and convergence of sequences

Definition. Let $(x_n)_{n\in\mathbb{N}}$ denote a sequence, and $x\in\mathbb{R}$. Then $(x_n)_{n\in\mathbb{R}}$ converges to x if for all $\epsilon>0$ there exists a natural number $N=N(\epsilon)\in\mathbb{R}$ such that,

$$\forall n > N(\epsilon) : |x_n - x| < \epsilon$$

In this case, we call x the limit of the sequence, also expressed as

$$x = \lim_{n \to \infty} x_n ,$$

and the sequence is called convergent. A sequence that does not converge, diverges.

 ϵ can be understood as "target precision". Convergence means that for all target precisions ϵ one can find an index $N(\epsilon)$ such that all sequence elements with index larger than $N(\epsilon)$ approximate x with error at most ϵ .

Cauchy criterion for sequences

Theorem 1. Let $(x_n)_{n\in\mathbb{R}}$ be a sequence. The sequence has a limit if and only if it satisfies the Cauchy criterion: For all $\epsilon>0$ there exists an $M(\epsilon)\in\mathbb{R}$ such that for all

$$\forall m, n > M(\epsilon) : |x_n - x_m| < \epsilon$$

Observation: We do not need to know the limit to check this criterion.

Convergence vs. boundedness

Theorem 2.

Let $(x_n)_{n\in\mathbb{R}}$ be a sequence.

- (a) The limit is unique, i.e., if $x = \lim_{n \to \infty} x_n$ and $y = \lim_{n \to \infty} x_n$, then x = y.
- (b) If the sequence converges, it is bounded.
- (c) Assume that the sequence is monotonic. If it is bounded, the sequence converges to $x \in \mathbb{R}$. Otherwise, it converges to $\pm \infty$.

Example:

• The sequence $x_n = \left(1 + \frac{1}{n}\right)^n$ is increasing and bounded, hence converges. The limit

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

is called Euler number, $e \approx 2.7182...$

Indefinite convergence

Definition. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence. Then

$$\lim_{n\to\infty} x_n = \infty$$

holds if for all $M \in \mathbb{R}$ there exists N = N(M) such that

$$\forall n > N(M) : x_n > M$$
.

We write

$$\lim_{n\to\infty} x_n = -\infty$$

if for all $M \in \mathbb{R}$ there exists N = N(M) such that

$$\forall n > N(M) : x_n < M$$
.

Sequences Limits Computing limits Series

Further examples

- ullet The constant sequence $x_n=r$ (for all $n\in\mathbb{N}$) converges to r.
- The sequence $x_n = 2n + 1$ (for $n \in \mathbb{N}$) is unbounded, hence divergent. Instead, $x_n \to \infty$.
- The sequence $x_n = n^{\alpha}$ (for $n \in \mathbb{N}$) converges to 0 if $\alpha < 0$, converges to 1 for $\alpha = 0$, and converges indefinitely for $\alpha > 0$.
- The alternating sequence $x_n = (-1)^n$ (for $n \in \mathbb{N}$), is bounded from below and above, yet divergent.
- The sequence $x_n = (-1)^n n$ has neither lower nor upper bound. In particular, it converges neither to $\pm \infty$ nor to any real number.

Asymptotic growth of sequences

Given two indefinitely converging sequences $x_n \to \infty$, $y_n \to \infty$, the convergence behaviour of $\frac{x_n}{y_n}$ allows to compare their growth for large n. Important examples are:

• For all $\alpha, \beta > 0$,

$$\lim_{n \to \infty} \frac{n^{\alpha}}{n^{\beta}} = \lim_{n \to \infty} n^{\alpha - \beta} = \begin{cases} \infty & \alpha > \beta \\ 1 & \alpha = \beta \\ 0 & \alpha < \beta \end{cases}$$

• For all $\alpha > 0, c > 1$,

$$\lim_{n\to\infty}\frac{n^{\alpha}}{c^n}=0 \text{ , but also } \lim_{n\to\infty}\frac{c^n}{n!}=0$$

where $n! = 1 \cdot 2 \cdot \ldots \cdot n$. I.e., as $n \to \infty$, $(n^{\alpha})_{n \in \mathbb{N}}$ grows more slowly than $(c^n)_{n \in \mathbb{N}}$, which in turn grows more slowly than $(n!)_{n \in \mathbb{N}}$.

Computing with limits

Theorem 3. Let $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}$ be sequences, and suppose that there exists N such that $x_n=y_n$ for all n>N. Then

$$x = \lim_{n \to \infty} x_n \Leftrightarrow x = \lim_{n \to \infty} y_n .$$

Theorem 4. Let $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}$ be sequences, and $r,s\in\mathbb{R}$. If

$$x = \lim_{n \to \infty} x_n \ , \ y = \lim_{n \to \infty} y_n$$

then

$$rx + sy = \lim_{n \to \infty} rx_n + sy_n , xy = \lim_{n \to \infty} x_n y_n.$$
 (1)

Moreover, if $y \neq 0$, then there exists N > 0 such that $y_n \neq 0$ for all n > N, and

$$\frac{x}{y} = \lim_{n \to \infty} \frac{x_n}{y_n} .$$

 Going back to the initial example: The population after one time unit

$$\lim_{n\to\infty} N\cdot \left(1+\frac{1}{n}\right)^n = Ne \ ,$$

where e is Euler's constant, and N is the initial population.

• We want to compute $\lim_{n \to \infty} \frac{n^2 - 3n + 1}{n^2 + 1}$. Dividing both denominator and enumerator by n^2 , we see that this limit equals $\lim_{n \to \infty} \frac{1 - 3n^{-1} + n^{-2}}{1 + n^{-2}}$. Using that $n^{-\alpha} \to 0$, for $\alpha = 1, 2$, the theorem allows to compute

$$\lim_{n \to \infty} \frac{n^2 - 3n + 1}{n^2 + 1} = \frac{\lim_{n \to \infty} 1 - 3n^{-1} + n^{-2}}{\lim_{n \to \infty} 1 + n^{-2}} = \frac{1}{1} = 1.$$

Generalizing the example

The argument employed for the previous example can be generalized to the ratio of polynomials:

Corollary. Let P, Q be polynomials, i.e.,

 $P(x) = a_m x^m + a_{m-1} x^{m-1} + \ldots + a_0$, $Q(x) = b_k x^k + b_{k-1} x^{k-1} + \ldots + b_0$,

$$(\lambda) = a_{m\lambda} + a_{m-1}\lambda + \dots + a_{0}, \quad (\lambda) = b_{k\lambda} + b_{k-1}\lambda + \dots + b_{0},$$

with $a_0,\ldots,a_m,b_0,\ldots,b_k\in\mathbb{R}$. Assume that $a_m\neq 0\neq b_k$. Then

$$\lim_{n \to \infty} \frac{P(n)}{Q(n)} = \begin{cases} & \infty & \text{if } m > k \\ \frac{a_m}{b_k} & \text{if } k = m \\ 0 & \text{if } m < k \end{cases}$$

Vector-valued sequences

Definition. A sequence of vectors is a rule assigning each $n \in \mathbb{N}$ a vector $\mathbf{x}_n \in \mathbb{R}^d$. Here the dimension d is independent of n. A vector $\mathbf{x} \in \mathbb{R}^d$ is called limit of the sequence if for all $\epsilon > 0$ there exists $N(\epsilon)$ such that

$$\forall n > N(\epsilon) : |\mathbf{x}_n - \mathbf{x}| < \epsilon$$

Again, we write $\mathbf{x} = \lim_{n \to \infty} \mathbf{x}_n$.

Theorem 5. Let $(\mathbf{x}_n)_{n\in\mathbb{N}}$ be a sequence of vectors in \mathbb{R}^d , and $\mathbf{x}\in\mathbb{R}^d$. Suppose that

$$\mathbf{x}_n = (x_n(1), \dots, x_n(d))^T, \ \mathbf{x} = (x(1), \dots, x(d))^T.$$

Then $\mathbf{x} = \lim_{n \to \infty} \mathbf{x}_n$ if and only if

$$\forall j = 1, \ldots, d : x(j) = \lim_{n \to \infty} x_n(j)$$
.

Examples

- The sequence $\mathbf{x}_n = (r, 1/n)^T$ converges to (r, 0).
- The sequence $\mathbf{x}_n = (2n+1,r)^T$ diverges, because the sequence $(2n+1)_{n\in\mathbb{N}}$ diverges.
- We fix an element of $\mathbb{C}=\mathbb{R}^2$, and consider the sequence $(z^n)_{n\in\mathbb{N}}$. Using $|z^n|=|z|^n$, one sees that this sequence
 - converges to 1 if z = 1;
 - converges to 0 if |z| < 1 (note that $|z^n 0| = |z|^n \to 0$);
 - diverges in all other cases.

Series

Definition. Let $(x_n)_{n\in\mathbb{N}_0}$ be a sequence. The series $\sum_{n=0}^{\infty} x_n$ is the sequence $(y_n)_{n\in\mathbb{N}_0}$ of partial sums

$$y_n = \sum_{k=0}^n x_k = x_0 + x_1 + \ldots + x_n$$
.

The series converges to $y \in \mathbb{R}$ if $y = \lim_{n \to \infty} y_n$, in which case we write

$$y = \sum_{n=0}^{\infty} x_n .$$

We say that the series $\sum_{n=0}^{\infty} x_n$ converges absolutely if $\sum_{n=0}^{\infty} |x_n|$ converges.

- Consider the series $\sum_{n=0}^{\infty} x_n$ for $x_n = r$, the constant sequence. The partial sum is computed as $y_n = (n+1)r$, which diverges unless r = 0.
- The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
- Consider the series $\sum_{n=0}^{\infty} \frac{1}{n+1} \frac{1}{n+2}$. We compute its partial sums:

$$y_0 = 1 - \frac{1}{2}$$
, $y_1 = y_0 + \frac{1}{2} - \frac{1}{3} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} = 1 - \frac{1}{3}$, ..., $y_n = 1 - \frac{1}{n-1}$

Thus

$$\sum_{n=1}^{\infty} \frac{1}{n+1} - \frac{1}{n+2} = \lim_{n \to \infty} y_n = 1$$

Computing with series

Theorem 6.

- The limit of a series is unique.
- Let $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}$ be sequences, and $r,s\in\mathbb{R}$. If

$$x = \sum_{n=0}^{\infty} x_n \ , \ y = \sum_{n=0}^{\infty} y_n$$

then

$$rx + sy = \sum_{n=0}^{\infty} rx_n + sy_n .$$
(2)

Remark: There are no simple rules for products of series.

The geometric series

Let $q \in \mathbb{R}$. We want to determine the limit of $\sum_{n=0}^{\infty} q^n$, if it exists. We already know that q=1 will not give a convergent series, hence $q \neq 1$. Let $y_n = \sum_{k=0}^n q^k$. Then we observe that

$$y_n \cdot (1-q) = (1+q+q^2+\ldots+q^n)(1-q)$$

$$= 1+q+q^2+\ldots+q^n-q-q^2-\ldots-q^n-q^{n+1}$$

$$= 1-q^{n+1}.$$

Thus

$$y_n = \frac{1 - q^{n+1}}{1 - q}$$

The geometric series

If |q| > 1, then

$$y_n = \frac{1 - q^{n+1}}{1 - q}$$
 does not converge , as $|q|^{n+1} \to \infty$

hence the sum diverges. In the other case, $q^{n+1} \rightarrow 0$ entails that

$$\sum_{n=0}^{\infty} q^n = \lim_{n \to \infty} \frac{1 - q^{n+1}}{1 - q} = \frac{1}{1 - q} .$$

We have thus proved:

Theorem 7. The sum $\sum_{n=0}^{\infty} q^n$ converges iff |q| < 1, with

$$\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}$$

Convergence criteria

Theorem 8. Let $(x_n)_{n\in\mathbb{N}_0}\subset\mathbb{R}$.

- (a) $\sum_{n=0}^{\infty} x_n$ converges if it converges absolutely.
- (b) Necessary condition: If $\sum_{n=0}^{\infty} x_n$ converges, then $\lim_{n\to\infty} x_n = 0$.
- (c) Let $\alpha > 0$. Then $\sum_{n=1}^{\infty} n^{-\alpha}$ converges precisely for $\alpha > 1$.

Sufficient convergence criteria

Theorem 9. Let $(x_n)_{n\in\mathbb{N}_0}\subset\mathbb{R}$.

- (a) Majorant criterion: Let $\sum_{n=0}^{\infty} z_n$ be an absolutely convergent series such that $|x_n| < |z_n|$. Then $(x_n)_{n \in \mathbb{R}}$ converges absolutely.
- (b) Quotient criterion: If there exists a constant c with 0 < c < 1, such that for all $n \in \mathbb{N}$, with n > M, $\left| \frac{x_{n+1}}{x_n} \right| < c$, then $\sum_{n=0}^{\infty} x_n$ converges absolutely.
- (c) Leibniz criterion: Suppose that the sequence $(x_n)_{n\in\mathbb{N}}$ converges to zero, and fulfills $|x_{n+1}|<|x_n|$ as well as $x_{n+1}\cdot x_n\leq 0$. Then $\sum_{n=0}^\infty x_n$ converges.

Example: The series $\sum_{n=1}^{\infty} n^{-1}$ diverges (Theorem 6.c)). However, $\sum_{n=1}^{\infty} (-1)^n n^{-1}$ converges, as a consequence of the Leibniz criterion: $|(-1)^n n^{-1}| > |-1^{n+1} (n+1)^{-1}|$, and $(-1)^n n^{-1} (-1)^{n+1} (n+1)^{-1} = \frac{-1}{n(n+1)}$.

Examples and remarks

Example: An important application of the quotient criterion is that the exponential series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges. In fact, this series is related to Euler's constant by the equation

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x .$$

Remarks:

• The quotient criterion follows from the convergence of the geometric series by applying the majorant criterion.

Sequences Limits Computing limits Series

Summary

- Convergence of sequences and series, indefinite and absolute convergence
- Convergence criteria for sequences: Necessary (e.g., boundedness), sufficient (e.g., boundedness and monotonicity)
- Convergence criteria for series: Majorant criterion, quotient criterion
- Important examples: Harmonic and geometric series
- Rules for the computation of limits

Note: It can be easy to determine whether a series or sequence converges, and hard to find the limit.