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Sequences

Motivation

We want to study the growth of a culture of bacteria. We are given
an initial population, consisting of N bacteria, and our aim is to
predict the number of bacteria after one time unit.

Underlying assumption: At any given time, the reproduction rate
equals one. That is, assuming that the population were constant
over a time interval of length ¢, the population size will have
changed by N - e.

However, the population size will not be constant over any time
interval. In order to obtain a good approximation, we subdivide the
time interval into n subintervals of equal length, introducing
th=20,8 = 1 co,tp =1,

n’
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Motivation

We then obtain the following approximations of the population size
after each subinterval:

1 1
attime t; : N-(1+=), attimet, : N-(14+>)?,
n n

1 n
attime t, =1 : N-(l—i—)

n

Each step depends on the assumption that the population size is
constant in the time between t; and tjy;.

This assumption should be increasingly accurate as the intervals
become small (i.e., as n becomes large)
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Motivation

We derived NV - (14 1)" as an estimate of the population size at
time 1. As n — oo, we expect the estimate to be arbitrarily close to
the true value:

That is, we are interested in the limit of

1 n
x,,zN-(l—l—) ,
n

as n — oQ.
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A second example

Recall that calculators use rational approximations of real numbers.
Thus we need a mechanism to compute such approximations. The
following is a simple scheme to approximate v/2:

@ Start with xg = 1.

@ Given a rational x,, we define

Xn+ 2/x
xn+1—"2/”e<@.

Then one can prove that for all n € Ny,
1 < xp < Xpt1 <2,

i.e., Xp11 is indeed closer to v/2 than x,. Moreover, one expects
that for any predefined precision ¢, sufficiently many repetitions
yield a value that approximates /2 within e.
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Sequences

Definition. A sequence of numbers is a rule assigning each natural
number n a real number x, € R. (Also called a mapping Ny — R).
It is denoted as

(Xn)n€N07 or Xg,X1,...,
Examples:
@ Let x, = r, for all n € N and some fixed r € R. This defines a
constant sequence.
@ Letting x, =2n+ 1, for n € Ny, one obtains the sequence
1,3,5,7,... of odd numbers, sorted in ascending order.
@ x, = n®, for n € Ny, and fixed o

e Example of a recursively defined series: Define (x5)nen, by

Xn + 2/Xn

5 (for n € Np)

X0:1,Xn+1:



Sequences

Properties of sequences

Definition. Let (x,)nen be a sequence. The sequence is called
@ (monotonically) decreasing if for all n € N, x,11 < xp;
@ (monotonically) increasing if for all n € N, x,41 > xp;
© monotonic if it is either an increasing or a decreasing sequence;
@ bounded from below if for some y e Rand all n € N, y < x,;
@ bounded from above if forsome y e Rand all n €N, y > xg;
@ bounded if it is both bounded from above and from below.

Moreover the sequence is called strictly decreasing (or increasing),
if Xp41 < xp holds (resp. xp41 > x,) for all n.
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EMES

@ Obviously, a decreasing sequence is bounded from above (e.g.,
by y = xp). Likewise, an increasing sequence is bounded from
below.

o The sequences x, = 2n+1 (n € Ng) and y, = n? (n € Np)
are bounded from below, strictly increasing and not bounded
from above.

o The sequence x, = X (n € N) is strictly decreasing, and
bounded both from above and below: 0 < x, < 1.

@ The sequence (xp)nen, Where x, = (1 + %)n is increasing and
bounded from above.

@ The sequence (xp)nen, defined by

Xn + 2/xp
2

fulfills 1 < x, < xp+1 < V2. Hence it is monotonic and
bounded.

x0=1, Xpp1 = (HGNQ)
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Limit and convergence of sequences

Definition. Let (x,)nen denote a sequence, and x € R. Then
(Xn)ner converges to x if for all € > 0 there exists a natural number
N = N(e) € R such that,

Vn> N(e) : |x, — x| <e
In this case, we call x the limit of the sequence, also expressed as

x = lim x, |,
n—oo
and the sequence is called convergent. A sequence that does not
converge, diverges.

€ can be understood as “target precision”. Convergence means that
for all target precisions € one can find an index N(¢) such that all
sequence elements with index larger than N(¢) approximate x with
error at most e.
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Cauchy criterion for sequences

Theorem 1. Let (xn)ner be a sequence. The sequence has a limit if
and only if it satisfies the Cauchy criterion: For all € > 0 there
exists an M(e) € R such that for all

Vm,n > M(e) @ |xp— xm| <€

Observation: We do not need to know the limit to check this
criterion.
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Convergence vs. boundedness

Theorem 2.
Let (xn)ner be a sequence.

(a) The limit is unique, i.e., if x =lim,_c X, and y = lim,_ o0 Xn,
then x = y.
(b) If the sequence converges, it is bounded.

(c) Assume that the sequence is monotonic. If it is bounded, the
sequence converges to x € R. Otherwise, it converges to +o0o.

Example:

@ The sequence x, = (1 + %)n is increasing and bounded, hence

converges. The limit
1 n
e = lim (1 + >
n—oo n

is called Euler number, e =~ 2.7182...
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Indefinite convergence

Definition. Let (x,)nen be a sequence. Then

lim x, = 00
n—oo

holds if for all M € R there exists N = N(M) such that
Vn>NM) : x> M .

We write

lim x, = —00
n—oo

if for all M € R there exists N = N(M) such that

Vn>N(M) : xp <M.
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Further examples

@ The constant sequence x, = r (for all n € N) converges to r.

@ The sequence x, = 2n+ 1 (for n € N) is unbounded, hence
divergent. Instead, x, — oo.

@ The sequence x, = n® (for n € N) converges to 0 if a < 0,
converges to 1 for & = 0, and converges indefinitely for o > 0.

@ The alternating sequence x, = (—1)" (for n € N), is bounded
from below and above, yet divergent.

@ The sequence x, = (—1)"n has neither lower nor upper bound.
In particular, it converges neither to +0o nor to any real
number.
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Asymptotic growth of sequences

Given two indefinitely converging sequences x, — 0o, y, — 00, the
convergence behaviour of ;—" allows to compare their growth for

n
large n . Important examples are:

e Forall o, >0,

o o a>pf
lim — = lim n* % = 1 a=p
n—o0 nﬂ n— o0
a<pf
@ Foralla>0,c>1,
. n® .o
lim — =0 ,butalso lim — =0
n—oo ¢ n—oo nl
where n! =1-2-...-n. le,, as n — 00, (N%)neN grows more

slowly than (c¢™)nen, which in turn grows more slowly than
(n!)nEN-
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Computing with limits

Theorem 3. Let (X4)nen, (¥n)nen be sequences, and suppose that
there exists N such that x, = y, for all n > N. Then

x= lim x, & x = ||m Yn
n—oo

Theorem 4. Let (xp)nen, (Vn)nen be sequences, and r,s € R. If

x=lim x,, y= ||m Vn

n—oo

then
rx +sy = lim rx, + sy, ,xy = lim x,yn. (1)
n—oo n—oo
Moreover, if y = 0, then there exists N > 0 such that y, # 0 for all
n> N, and

= |lim — .
y n—oo yn
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Examples and applications

@ Going back to the initial example: The population after one

time unit
1 n
lim N-<1+> = Ne ,

n—o0 n

where e is Euler's constant, and N is the initial population.
e We want to compute lim,_. ’P%fl“ Dividing both

denominator and enumerator by n?, we see that this limit
equals lim,_ % Using that n=¢ — 0, for a = 1,2,
the theorem allows to compute

" —=3n+1 limpoool—3n"14n2 1
im = - =-=1.
n—oo n?2—4+1 limy_oo 1 + N2 1
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Generalizing the example

The argument employed for the previous example can be
generalized to the ratio of polynomials:
Corollary. Let P, Q be polynomials, i.e.,

P(x) = amx™+am_1x™ 4. . +ap, Q(x) = bix*+br_1x* 4. +by,
with ag,...,am, bo, ..., bx € R. Assume that a,, £ 0 # by. Then
oo ifm>k

lim g(”) am  if k= m
n=oo Q(n) 0 ifm<k
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Vector-valued sequences

Definition. A sequence of vectors is a rule assigning each n € N a
vector x, € RY. Here the dimension d is independent of n. A
vector x € R? is called limit of the sequence if for all € > 0 there
exists N(e) such that

Vn> N(e) @ [xp—x| <e€

Again, we write x = lim,_, o X,.

Theorem 5. Let (x,)nen be a sequence of vectors in RY, and
x € R9. Suppose that
X = (xn(1), ..., xp(d)7 , x = (x(1),...,x(d))" .

Then x = lim,_, o X, if and only if

Vi=1,....d : x(j) = lim xp(j) .
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EMES

o The sequence x, = (r,1/n)7 converges to (r,0).

o The sequence x, = (2n + 1,r)7 diverges, because the
sequence (2n + 1)pen diverges.

e We fix an element of C = R?, and consider the sequence
(z")nen. Using |z"| = |z|", one sees that this sequence

e converges to 1 if z =1;
e converges to 0 if |z| < 1 (note that [z — 0] = |z|" — 0);
o diverges in all other cases.
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Series

Definition. Let (xa)necn, be a sequence. The series Y x, is the
sequence (yn)nen, of partial sums

n
ynZZxk:xo—i—xl—i—...—i—x,,.
k=0

The series converges to y € R if y = limp_o ¥n, in which case we

write
(oo}
=Y.
n=0

We say that the series »_° , x, converges absolutely if >~>7 ; |xq|
converges.
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EMES

@ Consider the series 220:0 xn for x, = r, the constant sequence.
The partial sum is computed as y, = (n + 1)r, which diverges
unless r = 0.

o The harmonic series 300, 1 diverges

o Consider the series > >° We compute its partial

n=0 n+1 n+2

sums:
1 FESE SUPHE UF U SUE O L,
Yo = 27)/1 Yo 5 3 2 9 3_ 3 ~y s Yn = -
Thus

oo

1 1 .
E — = lmy,=1
n+1 n+2 n—oo
n=0
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Computing with series

Theorem 6.
@ The limit of a series is unique.
@ Let (Xn)nen, (Vn)nen be sequences, and r,s € R. If

o0 [o¢]
X=X Y=Y ¥n
n=0 n=0

then

oo
I’X+Sy:Zan+5}/n- (2)

n=0

Remark: There are no simple rules for products of series.
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The geometric series

Let g € R. We want to determine the limit of Y 7° , ¢”, if it exists.
We already know that ¢ = 1 will not give a convergent series,
hence g # 1. Let y, = > 7_o g*. Then we observe that

Yo-(l—q) = (L+g+d+...+9")1—q)
= 14qg+¢*+...+¢"—qg—q¢*>°—...—q"— .¢"!
— 1_qn+1
Thus
1_qn+1
Yn=———

l1—gq
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The geometric series

If |g| > 1, then

|n+1 00

] does not converge , as|q
—4q

hence the sum diverges. In the other case, q"+3l — 0 entails that

o0 1 o
Zq” = lim 9 = .
n=0 n—oo 1 q 1- q

We have thus proved:

Theorem 7. The sum Y72, g" converges iff |g| < 1, with

> 1
n __
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Convergence criteria

Theorem 8. Let (xp)nen, C R.
(@) D02 xa converges if it converges absolutely.

(b) Necessary condition: If >"7°  x, converges, then
liMp_oo Xn = 0.

(c) Let @ > 0. Then > >, n~® converges precisely for oz > 1.
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Sufficient convergence criteria

Theorem 9. Let (xp)nen, C R.

(a) Majorant criterion: Let )7z, be an absolutely convergent
series such that |xp| < |z,|. Then (xp)ner converges
absolutely.

(b) Quotient criterion: If there exists a constant ¢ with 0 < ¢ < 1,
such that for all n € N, with n > M, | %22} < ¢, then > 7/% ; x,

converges absolutely.

(c) Leibniz criterion: Suppose that the sequence (xp)nen
converges to zero, and fulfills |x,11] < |xn| as well as
Xnt1 - Xn < 0. Then >~7° ) x, converges.

Example: The series -2, n~1 diverges (Theorem 6.c)). However,
32 1 (=1)"n~! converges, as a consequence of the Leibniz

criterion: [(—1)"n71| > [~1""!(n + 1)7Y|, and
(=1)"n (=) (n+ 1) = Sty
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Examples and remarks

Example: An important application of the quotient criterion is that
the exponential series Ziio Xn—',' converges. In fact, this series is
related to Euler’s constant by the equation

Remarks:

@ The quotient criterion follows from the convergence of the
geometric series by applying the majorant criterion.
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Summary

e Convergence of sequences and series, indefinite and absolute
convergence

e Convergence criteria for sequences: Necessary (e.g.,
boundedness), sufficient (e.g., boundedness and monotonicity)

e Convergence criteria for series: Majorant criterion, quotient
criterion

@ Important examples: Harmonic and geometric series

@ Rules for the computation of limits

Note: It can be easy to determine whether a series or sequence
converges, and hard to find the limit.



	Sequences
	Limits
	Computing limits
	Series

