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Motivation: Temperature Measurements (again)

Recall last week's setup: We have a sequence y0, y1, y2, . . . of
temperature measurements at times t = 0, 1, 2, . . .. (in hours)

Do these measurements allow to determine the temperature after

12.7 hours?
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A mathematical formulation

Let f : [0,M] → R denote the temperature function.

Measured data:

Measurements f (t) at times t0, t1, t2, t3 . . . , tN ∈ [0,M].

Challenge: Given s ∈ [0,M], determine f (s) approximately from

f (t0), . . . , f (tN).

Plausible answer: Find ti closest to s, then hopefully f (ti ) ≈ f (s).

Question: Given target precision ε > 0, what do we need to know

about f and t0, . . . , tN to ensure that |f (ti )− f (s)| < ε, for any s?

This leads to the notion of continuity.
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Limit of a function

De�nition.

Let f : D → R be a function, with D ⊂ Rn, and let x0 ∈ Rn. For

a ∈ R, we write
a = lim

x→x0

f (x)

if the following two conditions are ful�lled:

There exists a sequence (xk)k∈N ⊂ D satisfying x 6= xk , for all

k ∈ N, but x = limk→∞ xk .

For all sequences (xk)k∈N ⊂ D satisfying x = limk→∞ xk ,

a = lim
k→∞

f (xk) .
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Continuous functions

De�nition.

Let f : D → R be a function, with D ⊂ Rn.

Let x0 ∈ D. f is called continuous at x0 if

f (x0) = lim
x→x0

f (x) .

f is called continuous on D if it is continuous at all x ∈ D.

Theorem 1. (ε-δ-criterion)
f : D → R is continuous at x0 if and only if for every ε > 0 there

exists δ > 0 such that

∀y ∈ D : |x0 − y| < δ ⇒ |f (x0)− f (y)| < ε

Note: δ may depend on x0 and ε.
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Illustration of the ε-δ-criterion

Continuity of x 7→
√
x at x0 = 2: Fix ε = 0.2.

By monotonicity of the square root:

For all x with |x − x0| < 0.5 (red set),
√
1.5 <

√
x <

√
2.5 (green

set).

Since
√
2−

√
1.5,

√
2.5−

√
2 < ε, choosing δ = 0.5 is su�cient.

(Note: To prove continuity, we must be able to do this for any

ε > 0.)
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Continuous mappings

De�nition.

Let D ⊂ Rn, and f : D → Rm. Then

f (x) = (f1(x), f2(x), . . . , fm(x))T ,

with suitable functions f1, f2, . . . , fm : D → R. We say that f is

continuous at x0 ∈ D if f1, f2, . . . , fm are all continuous at x0.

Theorem 2. (ε-δ-criterion for mappings)

f : D → Rm is continuous at x0 if and only if for every ε > 0 there

exists δ > 0 such that

∀y ∈ D : |x0 − y| < δ ⇒ |f (x0)− f (y)| < ε
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Uniform continuity

De�nition.

Let f : D → R be a function, with D ⊂ Rn. Then f is called

uniformly continuous if for every ε > 0 there exists δ > 0 such that

∀x, y ∈ D : |x− y| < δ ⇒ |f (x)− f (y)| < ε

Note: δ only depends on ε!

Theorem 3.

Let f : D → R, with D ⊂ Rn.

If f is uniformly continuous, f is continuous.

Assume n = 1 and D = [a, b], with a, b ∈ R. If f is

continuous, then f is uniformly continuous and bounded.
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Examples

The functions f : (0, 4] → R, with f (x) = x−1, and g : [0, 4] → R,
with g(x) = (1 + x)−1. Both functions are continuous, but f is

unbounded, and not uniformly continuous, whereas g is uniformly

continuous.

,
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Uniform continuity and temperature measurements

Let f : [0,M] → R describe the temperature during the time

interval [0,M]. Assuming that f is continuous, we know by

Theorem 2 that f is uniformly continuous.

Hence, given target precision ε > 0, we �nd δ > 0 such that

|s − t| < δ ⇒ |f (s)− f (t)| < ε

Hence, by measuring temperature at t0 = 0, t1 = δ, t2 = 2δ, . . . , we
ensure that each point s ∈ [0,M] has distance at most δ to one

point ti . Accordingly,

|f (ti )− f (s)| < ε ,

as desired.
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Conclusions from the estimate

Positive conclusion: By increasing the density of measurements, we

can obtain approximations of any desired precision.

Drawback: We have no method of determining δ explicitly, if we

don't know f .
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Classes of continuous functions

f : Rn → R, de�ned by f (x) = |x | is continuous
Polynomials f : R → R are continuous. This includes a�ne

functions of the form f (x) = ax + b.

Trigonometric functions: sin, cos, tan are continuous on their

domains.

Exponential functions f : R → R, with f (x) = cx (for �xed

c > 0) are continuous.

The function min : R2 → R, (x , y) 7→ min(x , y) is continuous.
The same holds for max.

The function + : R2 → R, (x , y) 7→ x + y , is continuous.

Similarly, (x , y) 7→ xy is continuous.
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Further examples

If A is an m × n-matrix, the mapping f : Rm → Rn with

f (x) = Ax is continuous.

Vector addition is continuous, if we identify pairs (x, y) of
vectors in Rn with vectors (x1, . . . , xn, y1, . . . , yn)

T ∈ R2n:

+ : R2n → Rn , (x, y) 7→ x+ y

Similarly, scalar multiplication is continuous

·Rn+1 → Rn , (r , x1, . . . , xn)
T 7→ (rx1, . . . , rxn)

T .

Let f : D → R with

D = {(x , y) ∈ R : y 6= 0}

and f (x , y) = x
y . Then f is continuous.
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Continuity criteria

Composition of continuous functions yields continuous functions:

Theorem 3. Let f : D → Rm, g : E → Rn, with E ⊂ Rk , and

assume that g(E ) ⊂ D.
1 Let x0 ∈ E . If

g is continuous at x0 ∈ E ; and

f is continuous at g(x0);

then f ◦ g is continuous at x0.

2 If g is continuous on E and f is continuous on D, then f ◦ g is

continuous on E .

This criterion is very useful for showing continuity.
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Operations on continuous functions

Theorem 4. Let f , g : D → R, with D ⊂ Rn, and x0 ∈ D.

If f , g are continuous at x0, then so are

f · g , rf + sg .

If f , g are continuous at x0 and g(x0) 6= 0, then f
g is

continuous at x0.

Remark: These statements follow by concatenating known

continuous functions.

E.g., if f , g are continuous, then the mapping F : R → R2,

x 7→ (f (x), g(x))T is continuous. Also, we know that m : R2 → R,
where m(x , y) = xy , is continuous.

But then f · g = m ◦ F is continuous.
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Application: Computing limits

Assume we want to compute

y = lim
n→∞

sin

(√(
1 +

1

n

)n
)

.

We know that

limn→∞
(
1 + 1

n

)n
= e (Euler's constant)

√
· : R+

0 → R is continuous, hence limn→∞

√(
1 + 1

n

)n
=
√
e

sin : R → R is continuous, hence

y = sin(
√
e)
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Continuous images of closed and bounded interval

Theorem 5.

Let f : D → R, and suppose that [a, b] ⊂ D, for a, b ∈ R. Then
there exist r , s ∈ R such that f ([a, b]) = [r , s].

 A closed and bounded interval (red) is mapped onto a closed

and bounded interval (green)

,
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Existence of extrema

Corollary 1. (Weierstrasse Extreme Value Theorem)

Let f : D → R be continuous, and suppose that [a, b] ⊂ D, for

a, b ∈ R. Then there exist xmin, xmax ∈ [a, b] such that for all

x ∈ [a, b],
f (xmin) ≤ f (x) ≤ f (xmax) ,

or in other words,

f (xmax) = max{f (x) : x ∈ [a, b]} , f (xmin) = min{f (x) : x ∈ [a, b]} .

The point xmax is called a maximum point with maximum f (xmax).
Likewise, xmin is called minimum point with minimum f (xmin).
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Caution

It is important that f is de�ned on the closed and bounded interval

[a, b]: The function f (x) = 1/x , de�ned on (0, 4], does not have a
maximum. Likewise, no statements are possible for intervals [a,∞)
or (−∞, b].

Standard example: f (x) = 1/x , de�ned on (0, 4].
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Intermediate value theorem

Corollary 2. (Intermediate value theorem)

Let f : D → R be continuous, and suppose that [a, b] ⊂ D, for

a, b ∈ R. For every y between f (a) and f (b), there exists x ∈ [a, b]
with f (x) = y .

Corollary 3.(Existence of roots)

Let f : D → R be continuous, and suppose that [a, b] ⊂ D, for

a, b ∈ R. If f (a)f (b) < 0, there exists x ∈ [a, b] with f (x) = 0.

Remark. The condition f (a)f (b) < 0 means that f (a) and f (b)
have di�erent signs.
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Application: Searching for roots

Corollary 3 can be employed to (approximately) �nd roots of a

continuous function: Suppose that f : [a, b] → R is continuous,

and f (a)f (b) < 0.

By Corollary 3, we there exists x ∈ [a, b] with f (x) = 0. In general,

we can only hope to �nd an approximation to x .

Pick c ∈ (a, b). Then, either f (c)f (b) < 0 or f (a)f (c) < 0.

In the �rst case, Corollary 3 implies the existence of a root in [c, b],
in the second case, there must be a root in [a, c].

In any case, we have narrowed the search down from the interval

[a, b] to either [a, c] or [c, b].
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Illustration: Subdividing the interval

Sample function: f (x) = 0.5 + x3/2 cos(x), with f (0) > 0 > f (4).
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Illustration: Subdividing the interval

Introducing c = 2: Since f (0)f (2) < 0, we can restrict our search

to the interval [0, 2].
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Comparison of continuous functions

A further simple application is the following: If the continuous

function f : [a, b] → R ful�lls f (x) 6= 0 for all x ∈ [a, b], then either

f (x) > 0, for all x ∈ [a, b], or f (x) < 0, for all x ∈ [a, b].

Example: Solving inequalities.

We are given a continuous function f : D → R, where D is an

interval (possibly unbounded). We need to determine the set

S = {x ∈ D : f (x) ≤ 0}

We assume that f has only �nitely many roots, given by

−∞ < x1 < x2 < . . . xn < ∞
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Comparison of continuous functions

We introduce x0 = −∞ and xn+1 = ∞. By assumption, each

interval (xi , xi+1) contains no roots, hence the sign of f is constant.

It can therefore be determined by evaluating f (yi ) for some

arbitrary yi ∈ (xi , xi+1).

Hence we determine S as follows:

For i = 0, . . . , n: Pick an arbitrary yi ∈ (xi , xi+1).

S = {xi : i = 1, . . . , n} ∪
⋃
{(xi , xi+1) : f (yi ) < 0}
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Solving inequalities: Example

Our aim is to determine the set S of all x ∈ R satisfying

|x − 1|+ x ≤ 5 .

Clearly, f (x) = |x − 1|+ x − 5 is continuous, and it has x0 = 3 as

its only root. Hence, for every closed interval [a, b] contained in

(3,∞) or (−∞, 3), the sign of f is constant on [a, b].

Hence, we only need to check two intervals:

We pick an arbitrary x ∈ (3,∞), say 4. Since f (4) = 2 > 0,

we conclude that (3,∞) ∩ S = ∅.
We evaluate f (0) = −4 and conclude that (−∞, 3) ⊂ S.

⇒ The set of all solutions to the inequality is given by S = (−∞, 3].

 Only two evaluations are needed to obtain a complete solution!
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Inverse of continuous functions

Theorem 6. Let I be an interval, and f : I → R be continuous.

f is injective if and only if f is strictly monotonic.

If f is injective, then the inverse function f −1 : f (I ) → I is

again continuous.

Examples

The root functions x 7→ k
√
x are continuous.

The arctangent function is continuous.
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Summary

Important de�nitions: Limit of a function, continuity, uniform

continuity.

Application of continuity to limits of sequences.

Known classes of continuous functions: Polynomials, absolute

value, min,max, trigonometric functions, powers, roots

Checking continuity: Continuity is preserved by composition,

sums, products, inverse functions, etc.

Properties of continuous functions: Intermediate value

theorem, Extrema, etc.

Application of the properties: Search for roots, solving

inequalities
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