Calculus and linear algebra for biomedical engineering Week 7: Continuous functions

Hartmut Führ fuehr@matha.rwth-aachen.de

Lehrstuhl A für Mathematik, RWTH Aachen

November 27, 2008

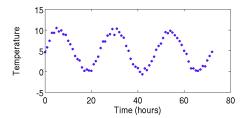
Overview

2 Uniform continuity

3 Computing with continuous functions

Motivation: Temperature Measurements (again)

Recall last week's setup: We have a sequence $y_0, y_1, y_2, ...$ of temperature measurements at times t = 0, 1, 2, ... (in hours)



Do these measurements allow to determine the temperature after 12.7 hours?

A mathematical formulation

Let $f : [0, M] \rightarrow \mathbb{R}$ denote the temperature function.

Measured data: Measurements f(t) at times $t_0, t_1, t_2, t_3, \ldots, t_N \in [0, M]$.

Challenge: Given $s \in [0, M]$, determine f(s) approximately from $f(t_0), \ldots, f(t_N)$.

Plausible answer: Find t_i closest to s, then hopefully $f(t_i) \approx f(s)$.

Question: Given target precision $\epsilon > 0$, what do we need to know about f and t_0, \ldots, t_N to ensure that $|f(t_i) - f(s)| < \epsilon$, for any s? This leads to the notion of continuity.

Limit of a function

Definition.

Let $f : D \to \mathbb{R}$ be a function, with $D \subset \mathbb{R}^n$, and let $\mathbf{x}_0 \in \mathbb{R}^n$. For $a \in \mathbb{R}$, we write

 $a = \lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x})$

if the following two conditions are fulfilled:

- There exists a sequence $(\mathbf{x}_k)_{k \in \mathbb{N}} \subset D$ satisfying $\mathbf{x} \neq \mathbf{x}_k$, for all $k \in \mathbb{N}$, but $\mathbf{x} = \lim_{k \to \infty} \mathbf{x}_k$.
- For all sequences $(\mathbf{x}_k)_{k\in\mathbb{N}}\subset D$ satisfying $\mathbf{x}=\lim_{k\to\infty}\mathbf{x}_k$,

$$a = \lim_{k \to \infty} f(\mathbf{x}_k) \; .$$

Continuous functions

Definition. Let $f: D \to \mathbb{R}$ be a function, with $D \subset \mathbb{R}^n$.

• Let $\mathbf{x}_0 \in D$. f is called continuous at \mathbf{x}_0 if

$$f(\mathbf{x}_0) = \lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) \; .$$

• f is called continuous on D if it is continuous at all $\mathbf{x} \in D$.

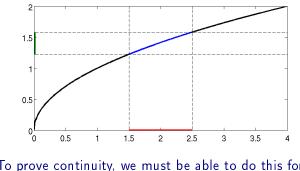
Theorem 1. (ϵ - δ -criterion) $f: D \to \mathbb{R}$ is continuous at \mathbf{x}_0 if and only if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$\forall \mathbf{y} \in D : |\mathbf{x}_0 - \mathbf{y}| < \delta \Rightarrow |f(\mathbf{x}_0) - f(\mathbf{y})| < \epsilon$$

Note: δ may depend on \mathbf{x}_0 and ϵ .

Illustration of the ϵ - δ -criterion

Continuity of $x \mapsto \sqrt{x}$ at $x_0 = 2$: Fix $\epsilon = 0.2$. By monotonicity of the square root: For all x with $|x - x_0| < 0.5$ (red set), $\sqrt{1.5} < \sqrt{x} < \sqrt{2.5}$ (green set). Since $\sqrt{2} - \sqrt{1.5}$, $\sqrt{2.5} - \sqrt{2} < \epsilon_1$ choosing $\delta = 0.5$ is sufficient.



(Note: To prove continuity, we must be able to do this for any $\epsilon > 0$.)

Continuous mappings

Definition. Let $D \subset \mathbb{R}^n$, and $f : D \to \mathbb{R}^m$. Then

$$f(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_m(\mathbf{x}))^T ,$$

with suitable functions $f_1, f_2, \ldots, f_m : D \to \mathbb{R}$. We say that f is continuous at $\mathbf{x}_0 \in D$ if f_1, f_2, \ldots, f_m are all continuous at \mathbf{x}_0 .

Theorem 2. (ϵ - δ -criterion for mappings) $f: D \to \mathbb{R}^m$ is continuous at \mathbf{x}_0 if and only if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$\forall \mathbf{y} \in D : |\mathbf{x}_0 - \mathbf{y}| < \delta \Rightarrow |f(\mathbf{x}_0) - f(\mathbf{y})| < \epsilon$$

Uniform continuity

Definition.

Let $f : D \to \mathbb{R}$ be a function, with $D \subset \mathbb{R}^n$. Then f is called uniformly continuous if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$orall \mathbf{x}, \mathbf{y} \in D$$
 : $|\mathbf{x} - \mathbf{y}| < \delta \Rightarrow |f(\mathbf{x}) - f(\mathbf{y})| < \epsilon$

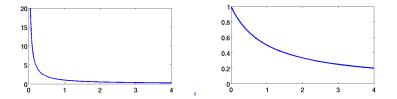
Note: δ only depends on ϵ !

Theorem 3.

Let $f: D \to \mathbb{R}$, with $D \subset \mathbb{R}^n$.

- If f is uniformly continuous, f is continuous.
- Assume n = 1 and D = [a, b], with a, b ∈ ℝ. If f is continuous, then f is uniformly continuous and bounded.

The functions $f : (0,4] \to \mathbb{R}$, with $f(x) = x^{-1}$, and $g : [0,4] \to \mathbb{R}$, with $g(x) = (1+x)^{-1}$. Both functions are continuous, but f is unbounded, and not uniformly continuous, whereas g is uniformly continuous.



Uniform continuity and temperature measurements

Let $f : [0, M] \to \mathbb{R}$ describe the temperature during the time interval [0, M]. Assuming that f is continuous, we know by Theorem 2 that f is uniformly continuous.

Hence, given target precision $\epsilon > 0$, we find $\delta > 0$ such that

$$|s-t| < \delta \Rightarrow |f(s) - f(t)| < \epsilon$$

Hence, by measuring temperature at $t_0 = 0, t_1 = \delta, t_2 = 2\delta, \ldots$, we ensure that each point $s \in [0, M]$ has distance at most δ to one point t_i . Accordingly,

$$|f(t_i)-f(s)|<\epsilon ,$$

as desired.

Continuity on intervals

Conclusions from the estimate

Positive conclusion: By increasing the density of measurements, we can obtain approximations of any desired precision.

Drawback: We have no method of determining δ explicitly, if we don't know f.

Classes of continuous functions

- $f:\mathbb{R}^n
 ightarrow\mathbb{R}$, defined by f(x)=|x| is continuous
- Polynomials f : ℝ → ℝ are continuous. This includes affine functions of the form f(x) = ax + b.
- Trigonometric functions: sin, cos, tan are continuous on their domains.
- Exponential functions $f : \mathbb{R} \to \mathbb{R}$, with $f(x) = c^x$ (for fixed c > 0) are continuous.
- The function min : $\mathbb{R}^2 \to \mathbb{R}$, $(x, y) \mapsto \min(x, y)$ is continuous. The same holds for max.
- The function $+ : \mathbb{R}^2 \to \mathbb{R}$, $(x, y) \mapsto x + y$, is continuous. Similarly, $(x, y) \mapsto xy$ is continuous.

Further examples

- If A is an $m \times n$ -matrix, the mapping $f : \mathbb{R}^m \to \mathbb{R}^n$ with $f(\mathbf{x}) = A\mathbf{x}$ is continuous.
- Vector addition is continuous, if we identify pairs (x, y) of vectors in Rⁿ with vectors (x₁,...,x_n, y₁,...,y_n)^T ∈ ℝ²ⁿ:

$$+: \mathbb{R}^{2n} \to \mathbb{R}^n , \ (\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x} + \mathbf{y}$$

Similarly, scalar multiplication is continuous

$$\cdot \mathbf{R}^{n+1} \to \mathbf{R}^n$$
, $(r, x_1, \dots, x_n)^T \mapsto (rx_1, \dots, rx_n)^T$.

• Let $f: D \to \mathbb{R}$ with

$$D = \{(x, y) \in \mathbb{R} : y \neq 0\}$$

and $f(x, y) = \frac{x}{y}$. Then f is continuous.

Continuity criteria

Composition of continuous functions yields continuous functions: Theorem 3. Let $f: D \to \mathbb{R}^m$, $g: E \to \mathbb{R}^n$, with $E \subset \mathbb{R}^k$, and assume that $g(E) \subset D$.

- $\textcircled{0} \text{ Let } \mathbf{x}_0 \in E. \text{ If }$
 - g is continuous at $\mathbf{x}_0 \in E$; and
 - f is continuous at $g(\mathbf{x}_0)$;

then $f \circ g$ is continuous at \mathbf{x}_0 .

2 If g is continuous on E and f is continuous on D, then $f \circ g$ is continuous on E.

This criterion is very useful for showing continuity.

Operations on continuous functions

Theorem 4. Let $f, g: D \to \mathbb{R}$, with $D \subset \mathbb{R}^n$, and $\mathbf{x}_0 \in D$.

• If f, g are continuous at \mathbf{x}_0 , then so are

 $f \cdot g$, rf + sg .

• If f, g are continuous at \mathbf{x}_0 and $g(\mathbf{x}_0) \neq 0$, then $\frac{f}{g}$ is continuous at \mathbf{x}_0 .

Remark: These statements follow by concatenating known continuous functions.

E.g., if f, g are continuous, then the mapping $F : \mathbb{R} \to \mathbb{R}^2$, $x \mapsto (f(x), g(x))^T$ is continuous. Also, we know that $m : \mathbb{R}^2 \to \mathbb{R}$, where m(x, y) = xy, is continuous. But then $f \cdot g = m \circ F$ is continuous.

Application: Computing limits

Assume we want to compute

$$y = \lim_{n \to \infty} \sin\left(\sqrt{\left(1 + \frac{1}{n}\right)^n}\right)$$
.

We know that

•
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$$
 (Euler's constant)

• $\sqrt{\cdot}: \mathbb{R}^+_0 \to \mathbb{R}$ is continuous, hence $\lim_{n \to \infty} \sqrt{\left(1 + \frac{1}{n}\right)^n} = \sqrt{e}$

 $\bullet~\mbox{sin}:\mathbb{R}\to\mathbb{R}$ is continuous, hence

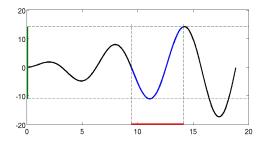
$$y = \sin(\sqrt{e})$$

1

Continuous images of closed and bounded interval

Theorem 5. Let $f : D \to \mathbb{R}$, and suppose that $[a, b] \subset D$, for $a, b \in \mathbb{R}$. Then there exist $r, s \in \mathbb{R}$ such that f([a, b]) = [r, s].

 \rightsquigarrow A closed and bounded interval (red) is mapped onto a closed and bounded interval (green)



Existence of extrema

Corollary 1. (Weierstrasse Extreme Value Theorem) Let $f: D \to \mathbb{R}$ be continuous, and suppose that $[a, b] \subset D$, for $a, b \in \mathbb{R}$. Then there exist $x_{\min}, x_{\max} \in [a, b]$ such that for all $x \in [a, b]$

 $f(x_{\min}) < f(x) < f(x_{\max})$,

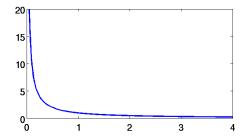
or in other words,

 $f(x_{\max}) = \max\{f(x) : x \in [a, b]\}, f(x_{\min}) = \min\{f(x) : x \in [a, b]\}.$

The point x_{max} is called a maximum point with maximum $f(x_{max})$. Likewise, x_{\min} is called minimum point with minimum $f(x_{\min})$.

It is important that f is defined on the closed and bounded interval [a, b]: The function f(x) = 1/x, defined on (0, 4], does not have a maximum. Likewise, no statements are possible for intervals $[a, \infty)$ or $(-\infty, b]$.

Standard example: f(x) = 1/x, defined on (0, 4].



Intermediate value theorem

Corollary 2. (Intermediate value theorem) Let $f: D \to \mathbb{R}$ be continuous, and suppose that $[a, b] \subset D$, for $a, b \in \mathbb{R}$. For every y between f(a) and f(b), there exists $x \in [a, b]$ with f(x) = y.

Corollary 3.(Existence of roots) Let $f : D \to \mathbb{R}$ be continuous, and suppose that $[a, b] \subset D$, for $a, b \in \mathbb{R}$. If f(a)f(b) < 0, there exists $x \in [a, b]$ with f(x) = 0.

Remark. The condition f(a)f(b) < 0 means that f(a) and f(b) have different signs.

Continuity on intervals

Application: Searching for roots

Corollary 3 can be employed to (approximately) find roots of a continuous function: Suppose that $f : [a, b] \to \mathbb{R}$ is continuous, and f(a)f(b) < 0.

By Corollary 3, we there exists $x \in [a, b]$ with f(x) = 0. In general, we can only hope to find an approximation to x.

Pick $c \in (a, b)$. Then, either f(c)f(b) < 0 or f(a)f(c) < 0. In the first case, Corollary 3 implies the existence of a root in [c, b], in the second case, there must be a root in [a, c].

In any case, we have narrowed the search down from the interval [a, b] to either [a, c] or [c, b].

Illustration: Subdividing the interval

Sample function: $f(x) = 0.5 + x^{3/2} \cos(x)$, with f(0) > 0 > f(4).

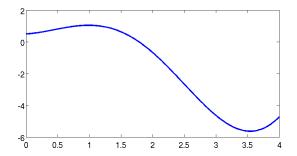
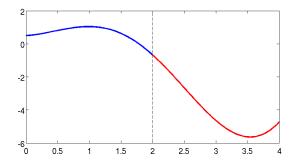


Illustration: Subdividing the interval

Introducing c = 2: Since f(0)f(2) < 0, we can restrict our search to the interval [0, 2].



Comparison of continuous functions

A further simple application is the following: If the continuous function $f : [a, b] \to \mathbb{R}$ fulfills $f(x) \neq 0$ for all $x \in [a, b]$, then either f(x) > 0, for all $x \in [a, b]$, or f(x) < 0, for all $x \in [a, b]$.

Example: Solving inequalities.

We are given a continuous function $f : D \to \mathbb{R}$, where D is an interval (possibly unbounded). We need to determine the set

$$\mathbb{S} = \{x \in D : f(x) \le 0\}$$

We assume that f has only finitely many roots, given by

$$-\infty < x_1 < x_2 < \ldots x_n < \infty$$

Continuity on intervals

Comparison of continuous functions

We introduce $x_0 = -\infty$ and $x_{n+1} = \infty$. By assumption, each interval (x_i, x_{i+1}) contains no roots, hence the sign of f is constant. It can therefore be determined by evaluating $f(y_i)$ for some arbitrary $y_i \in (x_i, x_{i+1})$.

Hence we determine ${\mathbb S}$ as follows:

- For $i = 0, \ldots, n$: Pick an arbitrary $y_i \in (x_i, x_{i+1})$.
- $\mathbb{S} = \{x_i : i = 1, ..., n\} \cup \bigcup \{(x_i, x_{i+1}) : f(y_i) < 0\}$

Continuity on intervals

Solving inequalities: Example

Our aim is to determine the set S of all $x \in \mathbb{R}$ satisfying

|x-1| + x < 5.

Clearly, f(x) = |x - 1| + x - 5 is continuous, and it has $x_0 = 3$ as its only root. Hence, for every closed interval [a, b] contained in $(3,\infty)$ or $(-\infty,3)$, the sign of f is constant on [a,b].

Hence, we only need to check two intervals:

• We pick an arbitrary $x \in (3, \infty)$, say 4. Since f(4) = 2 > 0, we conclude that $(3,\infty) \cap \mathbb{S} = \emptyset$.

• We evaluate f(0) = -4 and conclude that $(-\infty, 3) \subset \mathbb{S}$.

 \Rightarrow The set of all solutions to the inequality is given by $\mathbb{S} = (-\infty, 3]$.

 \rightarrow Only two evaluations are needed to obtain a complete solution!

Inverse of continuous functions

Theorem 6. Let I be an interval, and $f: I \rightarrow \mathbb{R}$ be continuous.

- f is injective if and only if f is strictly monotonic.
- If f is injective, then the inverse function $f^{-1}: f(I) \rightarrow I$ is again continuous.

Examples

- The root functions $x \mapsto \sqrt[k]{x}$ are continuous.
- The arctangent function is continuous.

Summary

- Important definitions: Limit of a function, continuity, uniform continuity.
- Application of continuity to limits of sequences.
- Known classes of continuous functions: Polynomials, absolute value, min,max, trigonometric functions, powers, roots
- Checking continuity: Continuity is preserved by composition, sums, products, inverse functions, etc.
- Properties of continuous functions: Intermediate value theorem, Extrema, etc.
- Application of the properties: Search for roots, solving inequalities