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Linear interpolation

Motivation: Temperature Measurements (yet again)

We have a sequence yg, y1, y2, . . . of temperature measurements at
times t =0,1,2,.... (in hours) as before. For the determination of
the temperature after 12.7 hours, we suggested to take y;3, simply
because 13 is the closest point in time for which we have a
measurement.

A more sophisticated guess for the temperature is obtained by
linear interpolation: We take

y12.7 = y12 + 0.7 - (y13 — y12)
The idea is to use information from both neighboring points in

time, weighting the contribution of the different points according to
their distance.



Linear interpolation

A mathematical formulation

Again we let f : [0, M] — R denote the temperature function.
Measured data:
Measurements f(t) at times 0 = ty, t, ta, t3...,ty = M € [0, M].

Linear interpolation: Given s € [0, M], hence s between t, and
th+1, we define

f(t"Jrl) — 7[(tn)
tn+1 — tn

8(s) = f(ta) + (s — ta)
Hence the graph of g is obtained by connecting the data points
(tn, f(tn))n=o0,.. n by straight lines.

Question: What do we need to know about f and ¢, ..., ty, to
estimate the precision of the approximation f(s) ~ g(s),
for arbitrary s?



Linear interpolation

Linear interpolation: An illustration
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Linear interpolation

Linear interpolation: An illustration

Linear interpolation (often used to visualize discrete data)
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Linear interpolation

Secant and difference quotient

Definition. Let (a, b) C R be an interval, with xo € (a, b) fixed. Let
f:(a,b) — R be a function.

Q If x € (a, b), the secant to f through xp, x is the straight line
connecting the points (xg, f(x0)), and (x, f(x)) in the plane.

@ The slope of the secant through x, given as

f(x) = f(x)

X — Xo

Afx(x) = Ar(x) =

is called the difference quotient associated to x, xp.



Linear interpolation

EES

Two secants to the function f(x) = xsin(7x) (blue curve) through
x=1
Green: x = 1.5, Red: x =1.75




Derivative

Definition of the derivative

Definition. Let DCRand f: D — R, x¢ € D.

(a) f is called differentiable at xp if, for some § > 0,
(x0 — 0,x0 +9) C D, and in addition,

_ f(x) ~ F()

- (1)
X — Xo

a= lim Af, (x)
0

X—X{(

exists in R.

(b) If f is differentiable, the limit « in (1) is called derivative of
at xp, and denoted by

df
f'(x0) := a(xo) =a.
(c) If fis differentiable at all xo € D, the function D 3> x — f’(x)

is called derivative function or just derivative of f.



Derivative

Interpretations of the derivative

o Grapbhically, the derivative is the slope of the tangent to the
graph through (xo, f(xp)). Alternatively, it can be interpreted
as the slope of the graph at xp.

The graph of a differentiable function is characterized by the
property that it has no sharp corners or bends.

@ The common physical interpretation is velocity: If f(t) denotes
the distance of an object travelling along a straight line t, the
velocity with which the object moves at time t is f(t), in this
context often denoted f(t).

@ In the modelling of biological or chemical processes, the

derivative of a population size or chemical quantity describes
its growth rate.



Derivative

Example

The tangent to the function f(x) = xsin(mx) (blue curve) through
x=1




Derivative

A continuous nondifferentiable function

The function f(x) = |x| is differentiable at xg # 0, but not at
xo = 0.

y A




Properties

Properties: Continuity, Mean value theorem

Theorem 1.
Let f : D — R be differentiable. Then f is continuous.

Theorem 2. (Mean value theorem)
Let f : D — R be continuous on [x, y| and differentiable on (x,y).
Then there exists z € (x,y) such that

)= F0) _ e
S =T

Note: Assuming f'(z) ~ f'(x), we can rewrite the formula in the
mean value theorem, and obtain an approximation of f(y) for y
close to x.

F(y) = £(x) + f(2)(y —x) = F(x) + £ () (y — x) .



Properties

[llustration of the mean value theorem

The function f(x) = xsin(x), x = 1,y = 1.75. There exists z
between x,y such that the tangent to f at z (red line) is parallel to
the secant through (x,7(x)), (v, f(y)) (green).




Computing derivatives

Rules for the computation of derivatives

Theorem 3. Let f, g : D — R be differentiable functions.
@ Linearity: For all s,t € R, sf + tg is differentiable on D, wtih
(sf +tg) =sf' +tg'.
@ Product rule: The function f - g : D — R,
(f - g)(x) = f(x)g(x), is differentiable with
(f-g)=f-g+f g
e Quotient rule: Suppose that g(x) # 0 for all x € D. Then the

map h(x) = % is differentiable on D, with

, f'(x)g(x) — f(x)g’(x
o) = 0= (98

@ Chain rule: Suppose that h: E — R is differentiable on E,
with h(E) C D. Then go h: E — E is differentiable on E,

with (g o h)(x) = g(h(x))H(x).



Computing derivatives

Derivative of the inverse function

Let : (a, b) — R be differentiable and strictly monotonic. Then
: f((a, b)) — (a, b) is differentiable as well, with

df—l( ) = 1
dy T ()

-1
The formula for df/y can be shown as follows:

_ df 1 , df 1 1
flof(x)=x= a (fx))-fix)=1= a (f(x)) = e

Substituting yo = f(x) and x = f~1(yp) into this gives the formula.



Computing derivatives

Known classes of differentiable functions

e For o € R, the function f(x) = x®, is differentiable on (0, c0)
with derivative f'(x) = ax®~!. This includes the constant
function f(x) = 1 = x%, with derivative f'(x) = 0.

o Alternatively, if n € N, the function f(x) = x" is differentiable
on R, with derivative f'(x) = nx"~!. The quotient rule entails
for g(x) = x7", that f/(x) = —nx~"T1,

@ As a consequence, polynomials f : R — R are differentiable.

@ Trigonometric functions: sin, cos, tan are differentiable on their

domains, with sin’ = cos, cos’ = — sin.
For tan = sin / cos, an application of the quotient rule yields
tan’(x) = 1

cos®(x)’



Computing derivatives

Example: Computing a derivative

We are given the function

f(x) = (x* +x)Y2 = (g1 0 (g2 + g3))(x), where
o gi(t) = t'/?, with gi(t) = t_;/z = 2%/;;
o g(t) = x2, with gj(t) = 2x;

o g3(t) = x*, with g5(t) = 4x3.

Applying the chain rule gives

—_ o~

F1(x) = g1(g2(x) + g3(x)) - (8a2(x) + &3(x)) .

and plugging in the derivatives, we obtain



Computing derivatives

Example: Computing a derivative

We are given the function f(x) = /sin(x2) = (g1 © &2 © g3)(x),

where
. -1/2 1
° gi(t) = t1/2, with gi(t) = L 5 = Tﬁ;
e go(t) =sin(t), with gi(t) = cos(t);
o g3(t) = t2, with gi(t) = 2t.
Applying the chain rule twice gives

f'(x) = g1(82(g3(x)))-(g2083)'(x) = £1(82(g3(x)))-82(83(x))-83() ,
and plugging in the derivatives, we obtain
oy — x cos(x?)

e cos(x?) 2% ——
2y/sin(x?)  ~—~— ) sin(x?)

R
%

=
0



Higher order derivatives

Higher order derivatives

Definition. Let D C R and f : D — R be a differentiable function.

o If f' is differentiable on D, we call the derivative of f/ second
derivative of f, denoted by

_d*f _ df

Cdx? T dx
The function f is then called twice differentiable.

e More generally, if f is n-time differentiable (with n € N), such
that its nth derivative f(") is differentiable again, the n + 1st
derivative of f is defined as

£ . g

Flnt1) . Jdrtif :: dF(m '
dxn+l dx
f is then called n + 1 times differentiable.

We use ", """ etc. for the third, fourth etc. derivative .
If all derivatives exist, f is called infinitely differentiable.




Higher order derivatives

EES

e The function f(x) = x" has derivative f'(x) = nx"!.

Repeated differentiation gives

n-(n—=1)-...-(n—k+1x"* k<n
f(k)(X):{ (1= S

In particular,  is infinitely differentiable. As a consequence,
polynomials are infinitely differentiable.

@ The function f(x) = sin(x) is infinitely differentiable:
f'(x) = cos(x), f"(x) = —sin(x) = —f(x). Hence we can
differentiate sin infinitely many times.

f(x):{x2 x>0

@ The function

0 x<0

is differentiable, but not twice differentiable on R: f’ is not
differentiable at 0.



Higher order derivatives

Taylor's theorem

Theorem. (Taylor)

Let D C Rand f: D — R be n+ 1 times differentiable. Let
X0,y € D be such that all points between xp,y are in D. Then
there exists z between (xp, y) such that

" FR)(x (n+1)(,
) = 3k -
> |
- f(Xo) -+ f/(Xo)(y — Xo) + f (2X0)(y — X())2 —+ ...
(n) (x (n+1)(,
#0hy a  a

where we used nl =1-2....-n.



Higher order derivatives

Taylor polynomial

Definition. If f is n+ 1 times differentiable, the polynomial

f"(x0) F)(x0)
2

Taua(¥) = FO0)HF/(0)(y—x0)+ 5 2y =x0)+. .-+ (y=x0)"

is called Taylor polynomial of f of degree n. The difference

£(n+1)
(z,) (y —x0

CES )

Rixo(¥) = f(¥) = Thxo(¥)

is called the remainder term.



Higher order derivatives

Interpretation of the Taylor polynomial

By Taylor's theorem,

(n+1)(,
) = o) = o)

If £(n+1) is continuous, there exists M > 0 such that
f(rt1)(z) < M for all z between y, xg, and thus

M n
’f(Y) - Tn,xo(Y)‘ < m’y —X0| < me

if [y — xo| < €. The right-hand side goes to zero as € — 0.
Note: The speed with which ¢! — 0 for € — 0 increases with n.

Hence, T, is a polynomial approximation of f near xo. The
quality of approximation increases as n — oo.



Higher order derivatives

Back to the initial example

Measured data:
Measurements f(t) at times 0 = tg, t, b2, t3...,ty = M € [0, M].

Linear interpolation: Given s € [0, M], hence s between t, and
th+1, we define

f(tny1) — f(tn)
tht1 — ty

g(s) = f(ta) + (s — tn)

Wanted: An estimate for |f(s) — g(s)|.



Higher order derivatives

Estimating the approximation error

We assume f to be twice differentiable on [0, M], with |f"(z2)| < K,
for a suitable constant K and all z € [0, M].

Using the mean value theorem, we obtain

8(s) = f(ta) + f'(2)(s — tn) ,

for z between s and t,.

Moreover, using Taylor approximation of degree one,

F(s) = f(ta) + F'(ta)(s — ta) + f,lé)/)(s )2,

with y between s and t,. Hence,

F(s) — () = (F(t2) — F()s—ta) + - s 1,2 (2)




Higher order derivatives

Estimating the approximation error

Applying the mean value theorem to f’, we obtain
f'(ta) — ' (2) = f"(r)(ts — 2)

with r between ¢, and z.

In particular: Assume that t, .1 —t, = 6. Then |s — t,| < 4, and if
z is between s and t,, also |t, — z| < ¢, and thus

(y)
2

f(s) —&(s)l < I(F'(ta) = '(2))(s — ta)| +| (s = tn)?]
< (If"(0] +1F"(y))o?
<

2K&? .



Higher order derivatives

Conclusions

Positive conclusion: As the distance ¢ of neighboring measurement
points decreases, the approximation error can be estimated by a
quadratic function of 6.

(~ Rule of thumb: Doubling the number of measurements results
in dividing the approximation error by four.)

Note: For concrete estimates, we need some upper bound on the
derivatives of f.



Higher order derivatives

Summary

@ Important definitions: Secant, difference quotient, derivative of
a function

o Properties of differentiable functions: Continuity, Mean value
theorem

o Known classes of differentiable functions: Polynomials,
trigonometric functions, powers, roots

e Computational rules for derivatives: Linearity, product rule,
chain rule

@ Higher derivatives, Taylor’s theorem
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