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Motivation: Temperature Measurements (yet again)

We have a sequence y0, y1, y2, . . . of temperature measurements at

times t = 0, 1, 2, . . .. (in hours) as before. For the determination of

the temperature after 12.7 hours, we suggested to take y13, simply

because 13 is the closest point in time for which we have a

measurement.

A more sophisticated guess for the temperature is obtained by

linear interpolation: We take

y12.7 ≈ y12 + 0.7 · (y13 − y12)

The idea is to use information from both neighboring points in

time, weighting the contribution of the di�erent points according to

their distance.
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A mathematical formulation

Again we let f : [0,M] → R denote the temperature function.

Measured data:

Measurements f (t) at times 0 = t0, t1, t2, t3 . . . , tN = M ∈ [0,M].

Linear interpolation: Given s ∈ [0,M], hence s between tn and

tn+1, we de�ne

g(s) = f (tn) +
f (tn+1)− f (tn)

tn+1 − tn
(s − tn)

Hence the graph of g is obtained by connecting the data points

(tn, f (tn))n=0,...,N by straight lines.

Question: What do we need to know about f and t0, . . . , tN , to
estimate the precision of the approximation f (s) ≈ g(s),
for arbitrary s?
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Linear interpolation: An illustration

Scatter plot
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Linear interpolation: An illustration

Linear interpolation (often used to visualize discrete data)
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Secant and di�erence quotient

De�nition. Let (a, b) ⊂ R be an interval, with x0 ∈ (a, b) �xed. Let
f : (a, b) → R be a function.

1 If x ∈ (a, b), the secant to f through x0, x is the straight line

connecting the points (x0, f (x0)), and (x , f (x)) in the plane.

2 The slope of the secant through x , given as

∆f ,x0(x) = ∆f (x) =
f (x)− f (x0)

x − x0

is called the di�erence quotient associated to x , x0.
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Examples

Two secants to the function f (x) = x sin(πx) (blue curve) through

x0 = 1

Green: x = 1.5, Red: x = 1.75
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De�nition of the derivative

De�nition. Let D ⊂ R and f : D → R, x0 ∈ D.

(a) f is called di�erentiable at x0 if, for some δ > 0,

(x0 − δ, x0 + δ) ⊂ D, and in addition,

α = lim
x→x0

∆f ,x0(x) =
f (x)− f (x0)

x − x0
(1)

exists in R.

(b) If f is di�erentiable, the limit α in (1) is called derivative of f

at x0, and denoted by

f ′(x0) :=
df

dx
(x0) := α .

(c) If f is di�erentiable at all x0 ∈ D, the function D 3 x 7→ f ′(x)
is called derivative function or just derivative of f .
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Interpretations of the derivative

Graphically, the derivative is the slope of the tangent to the

graph through (x0, f (x0)). Alternatively, it can be interpreted

as the slope of the graph at x0.

The graph of a di�erentiable function is characterized by the

property that it has no sharp corners or bends.

The common physical interpretation is velocity: If f (t) denotes
the distance of an object travelling along a straight line t, the

velocity with which the object moves at time t is f ′(t), in this

context often denoted ḟ (t).

In the modelling of biological or chemical processes, the

derivative of a population size or chemical quantity describes

its growth rate.
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Example

The tangent to the function f (x) = x sin(πx) (blue curve) through

x0 = 1
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A continuous nondi�erentiable function

The function f (x) = |x | is di�erentiable at x0 6= 0, but not at

x0 = 0.
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Properties: Continuity, Mean value theorem

Theorem 1.

Let f : D → R be di�erentiable. Then f is continuous.

Theorem 2. (Mean value theorem)

Let f : D → R be continuous on [x , y ] and di�erentiable on (x , y).
Then there exists z ∈ (x , y) such that

f (y)− f (x)

y − x
= f ′(z) .

Note: Assuming f ′(z) ≈ f ′(x), we can rewrite the formula in the

mean value theorem, and obtain an approximation of f (y) for y

close to x .

f (y) = f (x) + f ′(z)(y − x) ≈ f (x) + f ′(x)(y − x) .
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Illustration of the mean value theorem

The function f (x) = x sin(x), x = 1, y = 1.75. There exists z

between x , y such that the tangent to f at z (red line) is parallel to

the secant through (x , f (x)), (y , f (y)) (green).
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Rules for the computation of derivatives

Theorem 3. Let f , g : D → R be di�erentiable functions.

Linearity: For all s, t ∈ R, sf + tg is di�erentiable on D, wtih

(sf + tg)′ = sf ′ + tg ′.

Product rule: The function f · g : D → R,

(f · g)(x) = f (x)g(x), is di�erentiable with

(f · g)′ = f ′ · g + f · g ′.
Quotient rule: Suppose that g(x) 6= 0 for all x ∈ D. Then the

map h(x) = f (x)
g(x) is di�erentiable on D, with

h′(x) =
f ′(x)g(x)− f (x)g ′(x)

g(x)2
.

Chain rule: Suppose that h : E → R is di�erentiable on E ,

with h(E ) ⊂ D. Then g ◦ h : E → E is di�erentiable on E ,

with (g ◦ h)(x) = g ′(h(x))h′(x).
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Derivative of the inverse function

Let f : (a, b) → R be di�erentiable and strictly monotonic. Then

f −1 : f ((a, b)) → (a, b) is di�erentiable as well, with

df −1

dy
(y0) =

1

f ′(f −1(y0))
.

The formula for df −1

dy
can be shown as follows:

f −1 ◦ f (x) = x ⇒ df −1

dy
(f (x)) · f ′(x) = 1⇒ df −1

dy
(f (x)) =

1

f ′(x)
.

Substituting y0 = f (x) and x = f −1(y0) into this gives the formula.
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Known classes of di�erentiable functions

For α ∈ R, the function f (x) = xα, is di�erentiable on (0,∞)
with derivative f ′(x) = αxα−1. This includes the constant

function f (x) = 1 = x0, with derivative f ′(x) = 0.

Alternatively, if n ∈ N, the function f (x) = xn is di�erentiable

on R, with derivative f ′(x) = nxn−1. The quotient rule entails

for g(x) = x−n, that f ′(x) = −nx−n+1.

As a consequence, polynomials f : R → R are di�erentiable.

Trigonometric functions: sin, cos, tan are di�erentiable on their

domains, with sin′ = cos, cos′ = − sin.

For tan = sin / cos, an application of the quotient rule yields

tan′(x) = 1
cos2(x)

.
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Example: Computing a derivative

We are given the function

f (x) = (x4 + x2)1/2 = (g1 ◦ (g2 + g3))(x), where

g1(t) = t1/2, with g ′1(t) = t−1/2

2
= 1

2
√
t
;

g2(t) = x2, with g ′2(t) = 2x ;

g3(t) = x4, with g ′3(t) = 4x3.

Applying the chain rule gives

f ′(x) = g ′1(g2(x) + g3(x)) · (g ′2(x) + g ′3(x)) ,

and plugging in the derivatives, we obtain

f ′(x) =
1

2
√
x4 + x2)︸ ︷︷ ︸

g ′1(g2(x) + g3(x)))

( 2x︸︷︷︸
g ′2(x)

+ 4x3︸︷︷︸
g ′3(x)

) =
x + 2x3√
x4 + x2
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Example: Computing a derivative

We are given the function f (x) =
√
sin(x2) = (g1 ◦ g2 ◦ g3)(x),

where

g1(t) = t1/2, with g ′1(t) = t−1/2

2 = 1
2
√
t
;

g2(t) = sin(t), with g ′2(t) = cos(t);

g3(t) = t2, with g ′3(t) = 2t.

Applying the chain rule twice gives

f ′(x) = g ′1(g2(g3(x)))·(g2◦g3)′(x) = g ′1(g2(g3(x)))·g ′2(g3(x))·g ′3(x) ,

and plugging in the derivatives, we obtain

f ′(x) =
1

2
√
sin(x2)︸ ︷︷ ︸

g ′1(g2(g3(x)))

cos(x2)︸ ︷︷ ︸
g ′2(g3(x))

2x︸︷︷︸
g ′3(x)

=
x cos(x2)√
sin(x2)
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Higher order derivatives

De�nition. Let D ⊂ R and f : D → R be a di�erentiable function.

If f ′ is di�erentiable on D, we call the derivative of f ′ second
derivative of f , denoted by

f (2) := f ′′ :=
d2f

dx2
:=

df ′

dx
.

The function f is then called twice di�erentiable.

More generally, if f is n-time di�erentiable (with n ∈ N), such

that its nth derivative f (n) is di�erentiable again, the n + 1st

derivative of f is de�ned as

f (n+1) :=
dn+1f

dxn+1
:=

df (n)

dx
.

f is then called n + 1 times di�erentiable.

We use f ′′′, f ′′′′ etc. for the third, fourth etc. derivative .

If all derivatives exist, f is called in�nitely di�erentiable.
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Examples

The function f (x) = xn has derivative f ′(x) = nxn−1.
Repeated di�erentiation gives

f (k)(x) =

{
n · (n − 1) · . . . · (n − k + 1)xn−k k ≤ n

0 k > n
.

In particular, f is in�nitely di�erentiable. As a consequence,

polynomials are in�nitely di�erentiable.

The function f (x) = sin(x) is in�nitely di�erentiable:

f ′(x) = cos(x), f ′′(x) = − sin(x) = −f (x). Hence we can

di�erentiate sin in�nitely many times.

The function

f (x) =

{
x2 x ≥ 0

0 x < 0

is di�erentiable, but not twice di�erentiable on R: f ′ is not
di�erentiable at 0.



Linear interpolation Derivative Properties Computing derivatives Higher order derivatives

Taylor's theorem

Theorem. (Taylor)

Let D ⊂ R and f : D → R be n + 1 times di�erentiable. Let

x0, y ∈ D be such that all points between x0, y are in D. Then

there exists z between (x0, y) such that

f (y) =
n∑

k=0

f (k)(x0)

k!
(y − x)k +

f (n+1)(z)

(n + 1)!
(y − x0)

n+1

= f (x0) + f ′(x0)(y − x0) +
f ′′(x0)

2
(y − x0)

2 + . . .

. . . +
f (n)(x0)

n!
(y − x0)

n +
f (n+1)(z)

(n + 1)!
(y − x0)

n+1 ,

where we used n! = 1 · 2 · . . . · n.
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Taylor polynomial

De�nition. If f is n + 1 times di�erentiable, the polynomial

Tn,x0(y) = f (x0)+f ′(x0)(y−x0)+
f ′′(x0)

2
(y−x0)2+. . .+

f (n)(x0)

n!
(y−x0)n

is called Taylor polynomial of f of degree n. The di�erence

Rn,x0(y) = f (y)− Tn,x0(y) =
f (n+1)(z)

(n + 1)!
(y − x0)

n+1

is called the remainder term.
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Interpretation of the Taylor polynomial

By Taylor's theorem,

f (y)− Tn,x0(y) =
f (n+1)(z)

(n + 1)!
(y − x0)

n+1 .

If f (n+1) is continuous, there exists M > 0 such that

f (n+1)(z) ≤ M for all z between y , x0, and thus

|f (y)− Tn,x0(y)| ≤ M

(n + 1)!
|y − x0|n <

M

(n + 1)!
εn+1

if |y − x0| < ε. The right-hand side goes to zero as ε → 0.

Note: The speed with which εn+1 → 0 for ε → 0 increases with n.

Hence, Tn,x0 is a polynomial approximation of f near x0. The

quality of approximation increases as n→∞.
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Back to the initial example

Measured data:

Measurements f (t) at times 0 = t0, t1, t2, t3 . . . , tN = M ∈ [0,M].

Linear interpolation: Given s ∈ [0,M], hence s between tn and

tn+1, we de�ne

g(s) = f (tn) +
f (tn+1)− f (tn)

tn+1 − tn
(s − tn)

Wanted: An estimate for |f (s)− g(s)|.
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Estimating the approximation error

We assume f to be twice di�erentiable on [0,M], with |f ′′(z)| ≤ K ,

for a suitable constant K and all z ∈ [0,M].

Using the mean value theorem, we obtain

g(s) = f (tn) + f ′(z)(s − tn) ,

for z between s and tn.

Moreover, using Taylor approximation of degree one,

f (s) = f (tn) + f ′(tn)(s − tn) +
f ′′(y)

2
(s − tn)

2 ,

with y between s and tn. Hence,

f (s)− g(s) = (f ′(tn)− f ′(z))(s − tn) +
f ′′(y)

2
(s − tn)

2 . (2)
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Estimating the approximation error

Applying the mean value theorem to f ′, we obtain

f ′(tn)− f ′(z) = f ′′(r)(tn − z)

with r between tn and z .

In particular: Assume that tn+1 − tn = δ. Then |s − tn| < δ, and if

z is between s and tn, also |tn − z | < δ, and thus

|f (s)− g(s)| ≤ |(f ′(tn)− f ′(z))(s − tn)|+ | f
′′(y)

2
(s − tn)

2|

≤ (|f ′′(r)|+ |f ′′(y)|)δ2

≤ 2Kδ2 .



Linear interpolation Derivative Properties Computing derivatives Higher order derivatives

Conclusions

Positive conclusion: As the distance δ of neighboring measurement

points decreases, the approximation error can be estimated by a

quadratic function of δ.
( Rule of thumb: Doubling the number of measurements results

in dividing the approximation error by four.)

Note: For concrete estimates, we need some upper bound on the

derivatives of f .
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Summary

Important de�nitions: Secant, di�erence quotient, derivative of

a function

Properties of di�erentiable functions: Continuity, Mean value

theorem

Known classes of di�erentiable functions: Polynomials,

trigonometric functions, powers, roots

Computational rules for derivatives: Linearity, product rule,

chain rule

Higher derivatives, Taylor's theorem
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