Calculus and linear algebra for biomedical engineering Week 8: Differentiable functions

Hartmut Führ fuehr@matha.rwth-aachen.de

Lehrstuhl A für Mathematik, RWTH Aachen

December 5, 2008

- Linear interpolation
- The derivative: Definition and interpretation
- Properties of differentiable functions
- Computing derivatives
- 6 Higher order derivatives and Taylor's theorem.

Motivation: Temperature Measurements (yet again)

We have a sequence y_0, y_1, y_2, \ldots of temperature measurements at times $t = 0, 1, 2, \dots$ (in hours) as before. For the determination of the temperature after 12.7 hours, we suggested to take y_{13} , simply because 13 is the closest point in time for which we have a measurement.

A more sophisticated guess for the temperature is obtained by linear interpolation: We take

$$y_{12.7} \approx y_{12} + 0.7 \cdot (y_{13} - y_{12})$$

The idea is to use information from both neighboring points in time, weighting the contribution of the different points according to their distance.

Computing derivatives

Again we let $f:[0,M]\to\mathbb{R}$ denote the temperature function.

Measured data:

Linear interpolation

Measurements f(t) at times $0 = t_0, t_1, t_2, t_3, \dots, t_N = M \in [0, M]$.

Linear interpolation: Given $s \in [0, M]$, hence s between t_n and t_{n+1} , we define

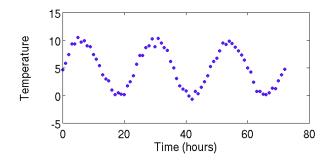
$$g(s) = f(t_n) + \frac{f(t_{n+1}) - f(t_n)}{t_{n+1} - t_n}(s - t_n)$$

Hence the graph of g is obtained by connecting the data points $(t_n, f(t_n))_{n=0,\dots,N}$ by straight lines.

Question: What do we need to know about f and t_0, \ldots, t_N , to estimate the precision of the approximation $f(s) \approx g(s)$, for arbitrary s?

Scatter plot

Linear interpolation



Linear interpolation (often used to visualize discrete data)



Definition. Let $(a, b) \subset \mathbb{R}$ be an interval, with $x_0 \in (a, b)$ fixed. Let $f:(a, b) \to \mathbb{R}$ be a function.

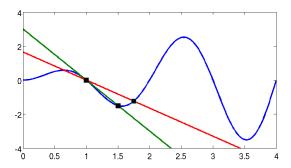
- If $x \in (a, b)$, the secant to f through x_0, x is the straight line connecting the points $(x_0, f(x_0))$, and (x, f(x)) in the plane.
- \bigcirc The slope of the secant through x, given as

$$\Delta_{f,x_0}(x) = \Delta_f(x) = \frac{f(x) - f(x_0)}{x - x_0}$$

is called the difference quotient associated to x, x_0 .

Two secants to the function $f(x) = x \sin(\pi x)$ (blue curve) through $x_0 = 1$

Green: x = 1.5, Red: x = 1.75



Definition. Let $D \subset \mathbb{R}$ and $f: D \to \mathbb{R}$, $x_0 \in D$.

(a) f is called differentiable at x_0 if, for some $\delta > 0$, $(x_0 - \delta, x_0 + \delta) \subset D$, and in addition,

$$\alpha = \lim_{x \to x_0} \Delta_{f, x_0}(x) = \frac{f(x) - f(x_0)}{x - x_0} \tag{1}$$

exists in \mathbb{R}

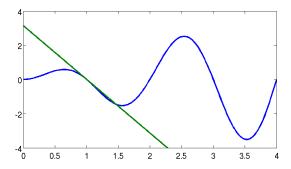
(b) If f is differentiable, the limit α in (1) is called derivative of f at x_0 , and denoted by

$$f'(x_0) := \frac{df}{dx}(x_0) := \alpha$$
.

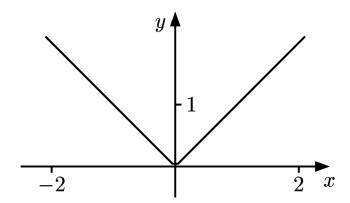
(c) If f is differentiable at all $x_0 \in D$, the function $D \ni x \mapsto f'(x)$ is called derivative function or just derivative of f.

- Graphically, the derivative is the slope of the tangent to the graph through $(x_0, f(x_0))$. Alternatively, it can be interpreted as the slope of the graph at x_0 .
 - The graph of a differentiable function is characterized by the property that it has no sharp corners or bends.
- The common physical interpretation is velocity: If f(t) denotes the distance of an object travelling along a straight line t, the velocity with which the object moves at time t is f'(t), in this context often denoted $\dot{f}(t)$.
- In the modelling of biological or chemical processes, the derivative of a population size or chemical quantity describes its growth rate.

The tangent to the function $f(x) = x \sin(\pi x)$ (blue curve) through $x_0 = 1$



The function f(x) = |x| is differentiable at $x_0 \neq 0$, but not at $x_0 = 0$.



Properties: Continuity, Mean value theorem

Theorem 1.

Let $f: D \to \mathbb{R}$ be differentiable. Then f is continuous.

Theorem 2. (Mean value theorem)

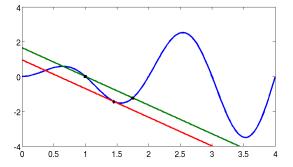
Let $f: D \to \mathbb{R}$ be continuous on [x,y] and differentiable on (x,y). Then there exists $z \in (x,y)$ such that

$$\frac{f(y)-f(x)}{y-x}=f'(z).$$

Note: Assuming $f'(z) \approx f'(x)$, we can rewrite the formula in the mean value theorem, and obtain an approximation of f(y) for y close to x.

$$f(y) = f(x) + f'(z)(y - x) \approx f(x) + f'(x)(y - x)$$
.

The function $f(x) = x \sin(x)$, x = 1, y = 1.75. There exists z between x, y such that the tangent to f at z (red line) is parallel to the secant through (x, f(x)), (y, f(y)) (green).



Rules for the computation of derivatives

Theorem 3. Let $f,g:D\to\mathbb{R}$ be differentiable functions.

- Linearity: For all $s, t \in \mathbb{R}$, sf + tg is differentiable on D, wtih (sf + tg)' = sf' + tg'
- Product rule: The function $f \cdot g : D \to \mathbb{R}$, $(f \cdot g)(x) = f(x)g(x)$, is differentiable with $(f \cdot g)' = f' \cdot g + f \cdot g'$
- Quotient rule: Suppose that $g(x) \neq 0$ for all $x \in D$. Then the map $h(x) = \frac{f(x)}{g(x)}$ is differentiable on D, with

$$h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}.$$

• Chain rule: Suppose that $h: E \to \mathbb{R}$ is differentiable on E, with $h(E) \subset D$. Then $g \circ h : E \to \mathbb{E}$ is differentiable on E, with $(g \circ h)(x) = g'(h(x))h'(x)$.

Derivative

Linear interpolation

Let $f:(a,b) \to \mathbb{R}$ be differentiable and strictly monotonic. Then $f^{-1}: f((a,b)) \rightarrow (a,b)$ is differentiable as well, with

$$\frac{df^{-1}}{dy}(y_0) = \frac{1}{f'(f^{-1}(y_0))}.$$

The formula for $\frac{df^{-1}}{dv}$ can be shown as follows:

$$f^{-1}\circ f(x)=x\Rightarrow \frac{df^{-1}}{dy}(f(x))\cdot f'(x)=1\Rightarrow \frac{df^{-1}}{dy}(f(x))=\frac{1}{f'(x)}.$$

Substituting $y_0 = f(x)$ and $x = f^{-1}(y_0)$ into this gives the formula.

Derivative

Linear interpolation

- For $\alpha \in \mathbb{R}$, the function $f(x) = x^{\alpha}$, is differentiable on $(0, \infty)$ with derivative $f'(x) = \alpha x^{\alpha-1}$. This includes the constant function $f(x) = 1 = x^0$, with derivative f'(x) = 0.
- Alternatively, if $n \in \mathbb{N}$, the function $f(x) = x^n$ is differentiable on \mathbb{R} , with derivative $f'(x) = nx^{n-1}$. The quotient rule entails for $g(x) = x^{-n}$, that $f'(x) = -nx^{-n+1}$.
- As a consequence, polynomials $f: \mathbb{R} \to \mathbb{R}$ are differentiable.
- Trigonometric functions: sin, cos, tan are differentiable on their domains, with $\sin' = \cos \cos' = -\sin a$ For tan = sin / cos, an application of the quotient rule yields $\tan'(x) = \frac{1}{\cos^2(x)}.$

Example: Computing a derivative

We are given the function

$$f(x) = (x^4 + x^2)^{1/2} = (g_1 \circ (g_2 + g_3))(x)$$
, where

•
$$g_1(t) = t^{1/2}$$
, with $g_1'(t) = \frac{t^{-1/2}}{2} = \frac{1}{2\sqrt{t}}$;

•
$$g_2(t) = x^2$$
, with $g_2'(t) = 2x$;

•
$$g_3(t) = x^4$$
, with $g_3'(t) = 4x^3$.

Applying the chain rule gives

$$f'(x) = g_1'(g_2(x) + g_3(x)) \cdot (g_2'(x) + g_3'(x)),$$

and plugging in the derivatives, we obtain

$$f'(x) = \underbrace{\frac{1}{2\sqrt{x^4 + x^2}}}_{g_1'(g_2(x) + g_3(x)))} (\underbrace{\frac{2x}{g_2'(x)}}_{g_2'(x)} + \underbrace{\frac{4x^3}{g_3'(x)}}_{g_3'(x)}) = \frac{x + 2x^3}{\sqrt{x^4 + x^2}}$$

Example: Computing a derivative

We are given the function $f(x) = \sqrt{\sin(x^2)} = (g_1 \circ g_2 \circ g_3)(x)$. where

•
$$g_1(t) = t^{1/2}$$
, with $g_1'(t) = \frac{t^{-1/2}}{2} = \frac{1}{2\sqrt{t}}$;

- $g_2(t) = \sin(t)$, with $g'_2(t) = \cos(t)$;
- $g_3(t) = t^2$, with $g_3'(t) = 2t$.

Applying the chain rule twice gives

$$f'(x) = g_1'(g_2(g_3(x))) \cdot (g_2 \circ g_3)'(x) = g_1'(g_2(g_3(x))) \cdot g_2'(g_3(x)) \cdot g_3'(x) ,$$

and plugging in the derivatives, we obtain

$$f'(x) = \underbrace{\frac{1}{2\sqrt{\sin(x^2)}}}_{g_1'(g_2(g_3(x)))} \underbrace{\cos(x^2)}_{g_2'(g_3(x))} \underbrace{2x}_{g_3'(x)} = \frac{x\cos(x^2)}{\sqrt{\sin(x^2)}}$$

Definition. Let $D \subset \mathbb{R}$ and $f: D \to \mathbb{R}$ be a differentiable function.

• If f' is differentiable on D, we call the derivative of f' second derivative of f, denoted by

$$f^{(2)} := f'' := \frac{d^2 f}{dx^2} := \frac{df'}{dx}$$
.

Computing derivatives

The function f is then called twice differentiable.

• More generally, if f is n-time differentiable (with $n \in \mathbb{N}$), such that its *n*th derivative $f^{(n)}$ is differentiable again, the n+1st derivative of f is defined as

$$f^{(n+1)} := \frac{d^{n+1}f}{dx^{n+1}} := \frac{df^{(n)}}{dx}$$
.

f is then called n+1 times differentiable.

We use f''', f'''' etc. for the third, fourth etc. derivative . If all derivatives exist, f is called infinitely differentiable.

• The function $f(x) = x^n$ has derivative $f'(x) = nx^{n-1}$. Repeated differentiation gives

$$f^{(k)}(x) = \begin{cases} n \cdot (n-1) \cdot \ldots \cdot (n-k+1)x^{n-k} & k \leq n \\ 0 & k > n \end{cases}.$$

Computing derivatives

In particular, f is infinitely differentiable. As a consequence, polynomials are infinitely differentiable.

- The function $f(x) = \sin(x)$ is infinitely differentiable: $f'(x) = \cos(x)$, $f''(x) = -\sin(x) = -f(x)$. Hence we can differentiate sin infinitely many times.
- The function

$$f(x) = \begin{cases} x^2 & x \ge 0 \\ 0 & x < 0 \end{cases}$$

is differentiable, but not twice differentiable on \mathbb{R} : f' is not differentiable at 0.

Derivative

Linear interpolation

Theorem. (Taylor)

Let $D \subset \mathbb{R}$ and $f: D \to \mathbb{R}$ be n+1 times differentiable. Let $x_0, y \in D$ be such that all points between x_0, y are in D. Then there exists z between (x_0, y) such that

$$f(y) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (y - x)^k + \frac{f^{(n+1)}(z)}{(n+1)!} (y - x_0)^{n+1}$$

$$= f(x_0) + f'(x_0)(y - x_0) + \frac{f''(x_0)}{2} (y - x_0)^2 + \dots$$

$$\dots + \frac{f^{(n)}(x_0)}{n!} (y - x_0)^n + \frac{f^{(n+1)}(z)}{(n+1)!} (y - x_0)^{n+1},$$

where we used $n! = 1 \cdot 2 \cdot \ldots \cdot n$.

Definition. If f is n+1 times differentiable, the polynomial

$$T_{n,x_0}(y) = f(x_0) + f'(x_0)(y - x_0) + \frac{f''(x_0)}{2}(y - x_0)^2 + \ldots + \frac{f^{(n)}(x_0)}{n!}(y - x_0)^n$$

is called Taylor polynomial of f of degree n. The difference

$$R_{n,x_0}(y) = f(y) - T_{n,x_0}(y) = \frac{f^{(n+1)}(z)}{(n+1)!} (y - x_0)^{n+1}$$

is called the remainder term.

Derivative

By Taylor's theorem,

Linear interpolation

$$f(y) - T_{n,x_0}(y) = \frac{f^{(n+1)}(z)}{(n+1)!} (y - x_0)^{n+1}$$
.

If $f^{(n+1)}$ is continuous, there exists M>0 such that $f^{(n+1)}(z) \leq M$ for all z between y, x_0 , and thus

$$|f(y) - T_{n,x_0}(y)| \le \frac{M}{(n+1)!} |y - x_0|^n < \frac{M}{(n+1)!} \epsilon^{n+1}$$

if $|y-x_0|<\epsilon$. The right-hand side goes to zero as $\epsilon\to 0$.

Note: The speed with which $e^{n+1} \to 0$ for $e \to 0$ increases with n. Hence, T_{n,x_0} is a polynomial approximation of f near x_0 . The quality of approximation increases as $n \to \infty$.

Measured data:

Linear interpolation

Measurements f(t) at times $0=t_0,t_1,t_2,t_3\ldots,t_N=M\in[0,M]$.

Linear interpolation: Given $s \in [0, M]$, hence s between t_n and t_{n+1} , we define

$$g(s) = f(t_n) + \frac{f(t_{n+1}) - f(t_n)}{t_{n+1} - t_n}(s - t_n)$$

Wanted: An estimate for |f(s) - g(s)|.

Estimating the approximation error

We assume f to be twice differentiable on [0, M], with $|f''(z)| \le K$, for a suitable constant K and all $z \in [0, M]$.

Using the mean value theorem, we obtain

$$g(s) = f(t_n) + f'(z)(s - t_n) ,$$

for z between s and t_n .

Moreover, using Taylor approximation of degree one,

$$f(s) = f(t_n) + f'(t_n)(s - t_n) + \frac{f''(y)}{2}(s - t_n)^2$$

with y between s and t_n . Hence,

$$f(s) - g(s) = (f'(t_n) - f'(z))(s - t_n) + \frac{f''(y)}{2}(s - t_n)^2 . \tag{2}$$

Estimating the approximation error

Applying the mean value theorem to f', we obtain

$$f'(t_n) - f'(z) = f''(r)(t_n - z)$$

with r between t_n and z.

In particular: Assume that $t_{n+1}-t_n=\delta$. Then $|s-t_n|<\delta$, and if z is between s and t_n , also $|t_n-z|<\delta$, and thus

$$|f(s) - g(s)| \le |(f'(t_n) - f'(z))(s - t_n)| + |\frac{f''(y)}{2}(s - t_n)^2|$$

 $\le (|f''(r)| + |f''(y)|)\delta^2$
 $\le 2K\delta^2$.

Positive conclusion: As the distance δ of neighboring measurement points decreases, the approximation error can be estimated by a quadratic function of δ .

(→ Rule of thumb: Doubling the number of measurements results in dividing the approximation error by four.)

Note: For concrete estimates, we need some upper bound on the derivatives of f

- Important definitions: Secant, difference quotient, derivative of a function
- Properties of differentiable functions: Continuity, Mean value theorem
- Known classes of differentiable functions: Polynomials, trigonometric functions, powers, roots
- Computational rules for derivatives: Linearity, product rule, chain rule
- Higher derivatives, Taylor's theorem