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Overview

@ Monotonicity and the first derivative
© Extreme values

© Convexity

@ Inflection points

© L'Hospital's theorem



Monotonicity

Motivation

Consider the function f(x) = 2x? — \/x on the interval [0, 1].
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f is continuous on [0, 7], hence we know that there exist xmax and
Xmin € [0, 7] such that

f(xmax) = max{f(x) : 0 < x < 7}, f(xmin) = min({f(x) : 0 < x < 7}.

How do we find xmax, Xmin? How do we determine monotonicity of
f?



Monotonicity

Monotonicity and the first derivative

Theorem 1.
Let f : [a, b] — R be continuous, and differentiable on (a, b).

e f is increasing on [a, b] iff f'(x) > 0, for all x € (a, b).
e f is strictly increasing on [a, b] if f'(x) > 0, for all x € (a, b).
e f is decreasing on [a, b] iff f'(x) <0, for all x € (a, b).
o f is strictly decreasing on [a, b] if f'(x) < 0, for all x € (a, b).

(Partial) Proof: Assume that x,y € (a, b) with x < y. By the
mean value theorem,

) = F6)
y —x _f()a

for a suitable z between x and y. Since y > x, this equation
implies that f(y) — f(x) > 0 iff f/(z) > 0.



Monotonicity

Determining monotonicity intervals of a function

Let f be continuously differentiable on (a, b), and suppose that f’
has only finitely many roots in (a, b). Then the monotonicity
behaviour of f is determined as follows:

e Compute f'.
e Compute all roots xg, ..., xx of f'in (a,b).

@ In each interval (x;, x;1+1), determine the sign of ' by
evaluating f'(c;), for suitable ¢; € (x;, xj11)-

On [x, xj11], f is strictly increasing, if f'(c;) > 0; otherwise f
is strictly decreasing.



Monotonicity

An example

Consider f(x) = x> — 10x? — 7x + 50
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Monotonicity

An example

Then f/(x) =3x? —20x — 7 = (3x + 1)(x — 7)
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Monotonicity

An example

Hence, ' has roots —1/3 and 7
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Monotonicity

An example

f (blue) increases wherever ' (red) is positive. Hence:
e f'(x) >0 for x € (—o00,—1/3) and x € (7,00) implies: f is
strictly increasing on (—oo, —1/3] and on [7,00).
e f'(x) <0in (—1/3,7) implies: f is strictly decreasing on
[—1/3,7].
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Extreme values

Extreme values

Definition: Let f : [a,b] — R, and x¢ € |[a, b].

@ xg is called local minimum point if for a suitable § > 0 and all
xe(b—9d,b+0d)N]Ja,b], f(x) < f(x)

@ xp is called local maximum point if for a suitable § > 0 and all
x€(b—=9,b+0d)N]Ja,b], f(x0) > f(x)

@ xp is called global minimum point of f on [a, b] if for all
x € [a, b], f(x0) < f(x).

@ xp is called global maximum point of f on [a, b] if for all
x € [a, b], f(x0) > f(x).

@ The local (or global) minimum and maximum points are called
local (or global) extrema.

Note: Global extrema are local extrema as well.



Extreme values

[llustration: Extreme values

The function f(x) = x3 — 10x? — 7x + 50 has two local maximum
and two local minimum points in the interval [—3, 10] (which will
be determined later).
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Extreme values

Extreme values and monotonicity

Theorem 2
Let f :[a,b] — R, and x € [a, b].

@ Suppose that f is decreasing in (x — 0, x] N [a, b], and
increasing in [x, x + 0), for some 6 > 0. Then x is a local
minimum point.

e Suppose that f is increasing in (x — d, x] N [a, b], and
decreasing in [x, x 4 ¢), for some § > 0. Then x is a local
maximum point.

Informally:

@ If f increases to the left of x and decreases to the right of x,
then x is a local maximum point.

@ For the boundary points a, b, only one-sided behaviour must
be considered.



Extreme values

Extreme values and the first derivative

Theorem 3.
Let f : [a, b] — R be continuous, and differentiable on (a, b).

o If x € [a, b] is such that f'(y) < 0 for all

y € (x —d,x)N[a, b], and f'(y) > 0 for all

y € (x,x +0) N[a,b], then f is a local minimum point.
e If x € [a, b] is such that f'(y) > 0 for all

y € (x = d,x)N[a,b], and f'(y) < 0 for all

y € (x,x +0) N[a,b], then f is a local maximum point.
o If x € (a,b) is a local extremum point, then '(x) = 0.

The analogous statements, with reversed inequalities, holds for
local minimum points.

Note: The condition f/(x) = 0 (for an inner point) is only
necessary, not sufficient. For sufficient criteria, we need higher
derivatives.



Extreme values

Extreme values and higher derivatives

Theorem 4. Assume that f : [a, b] — R is 2k times differentiable,
for some k € N. Let a < xg < y be such that

fl(x0) = f"(x0) = ... = FP*D(x) = 0.

o If fK)(x5) < 0, then f has a local maximum at xo.
o If f(2)(x) > 0, then f has a local minimum at xq.
(

o If £(2K) x0) =0, and f is 2k + 1 times differentiable with
f(k+1)(xg) # 0, then f has neither a local maximum nor a
local minimum at xg. (xo is a saddle point.)



Extreme values

Example: Integer powers

Consider f(x) = x", with n € N. Then
£10) = f"(0)=...=fFr D) =0, FNO)=nl > 0.

Hence

o If nis even, say n = 2k, then xg = 0 is a local minimum point.

e If nis odd, say n = 2k + 1, there is no local extremum at
x0=0
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Extreme values

Example: Determining local and global extrema

We are interested in local and global extrema of
f(x) = x3 — 10x? — 7x + 50 on the interval [-3,10]. Recalling that

f'(x) =3x%> —=20x =7 = (3x +1)(x = 7) , f"(x) = 6x — 20

we determine the following possible candidates for local extrema:
o Left boundary: x = —3. Because of f/(—3) =80 >0, x = -3

is a local minimum, with f(—3) = —46.

@ First root: x = —1/3. We have f”’(—1/3) = —22 < 0, which
makes x = —1/3 a local maximum.

@ Second root: x =7. Here f’(7) =22 >0, hence x =7 is a
local minimum with f(7) = —146.

e Right boundary: x = 10. Because of f/(10) =93 > 0, x = 10
is a local maximum, with f(x) = —20.



Extreme values

Determining global extrema

Comparing local extrema, we find that
@ Xmin = 7 is a global minimum point in [—3, 10].

® Xmax = —1/3 is a global maximum point in [—3,10].
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Extreme values

Back to the initial example

We study the function f(x) = 2x? — \/x on the interval [0,1]. f is
continuous on [0, 1] and differentiable on (0, 1).

o f/(x) =4x — 1x71/2. Hence
1 1 1\’
Flx) =06 ax = ox 2 e ¥ = - = () ,

hence f/(xo) = 0 only for xo = 1.

o f(x) =4+ 1x7%2>0, for all x € (0,1). In particular,
f”(1/4) > 0, which makes 1/4 a local minimum point.

@ For x < 1/4, we have 4x < 1, and x71/2 > 1/2. Hence
f'(x) <0, and f is strictly decreasing on [0,1/4].

e Similarly, f'(x) > 0 for x > 1/4, and f is strictly increasing.

@ In particular, 0 is a local maximum point, and 1 is a local
minimum point.



Extreme values

Back to the initial example

Conclusion: f strictly decreases on [0,1/4], and strictly increases
on [1/4,1]. The boundaries are local maximum point, 1/4 is the
unique local minimum point, which is therefore global.

f(1) =1 is the maximum of f on [0, 1], and 7(1/4) = —0.375 the

minimum.
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Extreme values

Application: Deriving inequalities

We want to prove the inequality

. 2x

>
sin(x) > -
for all x € [0, 7/4]. For this purpose we let f(x) = sin(x) — 2X. We
then need to show that f(x) > 0 for all x € [0, 7/4]. We make the
following observations:

e f(0)=0.
o f/(x) = cos(x) — 2.
cos is decreasing on [0, 7/4], hence

F(x) > F(n/4) = cos(r/4) — ; —~ 0.0705 > 0

@ Hence f increases on [0, 7/4], in particular f(x) > f(0) = 0.



Convexity

Convexity

Definition. A function f : [a, b] — R is called convex if for all
x,y €la,bland all 0 < A < 1:

FAx+ (1 =XN)y) <A (x)+(1=XNf(y) .

f is called concave if —f is convex.

Note: As A runs through (0, 1), the points

(Ax+ (1= Ay, A (x) + (1 — X)f(y)) run through all points on the
secant between x and y.

Thus, convexity means that the secant between two points on the
graph is above (or on) the graph.

Graphically, convexity means that the graph of f curves upwards.



Convexity

lllustration: Convexity

Graphically: The function f : [a, b] — R is convex iff for all x, y,
the secant between x and y is above the graph of f:




Convexity

Convexity and the second derivative

Theorem 5. Let f : [a, b] — R be differentiable. Then f is convex
iff £/ is increasing.

In particular, if f is twice differentiable, f is convex iff for all

x € (a,b), f"(x) > 0.

Example: The function f(x) = x¥ (with k € N) is convex on R iff
k <1, orif k is even:
o If k<1, then f”(x) =0 >0.
o If k is even, then f”(x) = k(k — 1)xk=2 > 0, because k — 2 is
even.
o If k is odd, then f”(x) <0 for x <0, hence f is concave on

(—00,0], and ”(x) > 0 for x > 0 implies that f is convex on
[0, 00).



Inflection points

Inflection points

Definition. Let f : [a, b] — R be a differentiable function.
xo € (a, b) is called inflection point if it is a local extremum of f'.

Remarks:

@ At inflection points, f changes between convexity and
concavity.

@ Inflection points are determined from higher derivatives of f by
applying Theorems 3 and 4 to f’. In particular, all inflection
points are roots of the second derivative.



Inflection points

Example: Determining an inflection point

Consider f(x) = x3 — 10x? — 7x + 50. Candidates for inflection
points are the roots of f”. Here we have

fl(x)=3x* =20x -7, f"(x) =6x—20, f"(x)=6>0.

Hence xp = % is an inflection point.

f is concave on (—o0,10/3], and convex on [10/3, c0).
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Inflection points

Application: Inequalities from convexity

We want to prove the inequality
sin(x) >

for all x € [0,7/2]. For this purpose we let f(x) = sin(x) — 2X. We
want to show £ > 0 on [0,7/2].

Noting that f”(x) = —sin(x) < 0, for all x € [0,7/2], we conclude
that f is concave on [0, 7/2].

In particular, the secant between 0,7/2 is below the graph of 7.
But .
F0)=0=f (5)

shows that the secant through 0,7/2 is on the x-axis, hence
f(x) > 0 for all x € [0,7/2].



Inflection points

Convergence to oo

Definition. Let f : (a, b) — R, and xg € R. Then

limy—x, f(x) = o0 if
@ There exists a sequence (x,)nen C (a, b) with xg = limp_o Xp
@ For every sequence (xp)nen C (@, b) with xo = limp_ 0 Xp,

nll_)mc>O f(xp) =00 .

Example: f(x) = % defined on (0, 1), fulfills limy_q f(x) = 00
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L’Hospital’s theorem

L'Hospital's theorem

Theorem 6. Let f, g : [a, b] — R be differentiable functions, and
xo € [a, b]. Assume that either

lim f(x)= lim g(x)=0or XILn)w(O f(x)| = lim |g(x)| = o0 .

X—X0 X—X0 X—X0

If there exists y € R such that

L f'(x)
ey

then .
y = lim (x)

X—X0 g X)



L’Hospital’s theorem

Sample applications of L'Hospital’'s theorem

o Consider f(x) = S'n(x , for x £ 0.
Both denominator and enumerator converge to 0 as x — 0.
Hence, taking derivatives of both,

lim sin(x) = lim

X—X0 X x—0 1

o Consider g(x) = COS(X)_l , for x # 0.
Both denominator and enumerator converge to 0 as x — 0.
Taking derivatives of both gives 2 ( sin(x) " which we know to
converge. Hence
-1 —si 1
im cos(x) — im sin(x) _ 1
x—0 X2 x—0 2x 2
Note that we obtained this result by a repeated application of
L'Hospital’s theorem.



L’Hospital’s theorem

Summary

Properties of curves: Monotonicity, local and global extrema,
convexity

Criteria based on derivatives

A systematic analysis of functions is based on

o Computation of derivatives.

o Computation of roots, signs of derivatives on

o Interpretation of signs and roots: Roots of f’ correspond to
extrema, roots of f” to inflection points. The sign of f’
corresponds to monotonicity, the sign of f” to convexity.

L’Hopital’s theorem for the computation of limits.
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