

fuehr@matha.rwth-aachen.de

Lehrstuhl A für Mathematik, RWTH Aachen

December 11, 2008

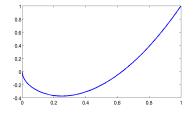
Monotonicity	Extreme values	Convexity	Inflection points	L'Hospital's theorem
Overview				

2 Extreme values

Inflection points

Monotonicity	Extreme values	Convexity	Inflection points	L'Hospital's theorem
Motivatior	1			
		_		

Consider the function $f(x) = 2x^2 - \sqrt{x}$ on the interval [0, 1].



f is continuous on $[0,\pi]$, hence we know that there exist x_{\max} and $x_{\min} \in [0,\pi]$ such that

 $f(x_{\max}) = \max\{f(x) : 0 \le x \le \pi\}, \ f(x_{\min}) = \min(\{f(x) : 0 \le x \le \pi\}.$

How do we find x_{max}, x_{min} ? How do we determine monotonicity of f?

Monotonicity and the first derivative

Theorem 1.

Let $f:[a,b]
ightarrow \mathbb{R}$ be continuous, and differentiable on (a,b).

- f is increasing on [a, b] iff $f'(x) \ge 0$, for all $x \in (a, b)$.
- f is strictly increasing on [a, b] if f'(x) > 0, for all $x \in (a, b)$.
- f is decreasing on [a, b] iff $f'(x) \leq 0$, for all $x \in (a, b)$.
- f is strictly decreasing on [a, b] if f'(x) < 0, for all $x \in (a, b)$.

(Partial) Proof: Assume that $x, y \in (a, b)$ with x < y. By the mean value theorem,

$$\frac{f(y)-f(x)}{y-x}=f'(z) ,$$

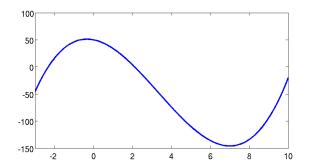
for a suitable z between x and y. Since y > x, this equation implies that $f(y) - f(x) \ge 0$ iff $f'(z) \ge 0$.

Determining monotonicity intervals of a function

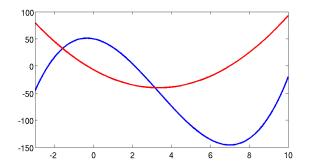
Let f be continuously differentiable on (a, b), and suppose that f' has only finitely many roots in (a, b). Then the monotonicity behaviour of f is determined as follows:

- Compute f'.
- Compute all roots x_0, \ldots, x_k of f' in (a, b).
- In each interval (x_i, x_{i+1}) , determine the sign of f' by evaluating $f'(c_i)$, for suitable $c_i \in (x_i, x_{i+1})$.
- On [x_i, x_{i+1}], f is strictly increasing, if f'(c_i) > 0; otherwise f is strictly decreasing.

Consider $f(x) = x^3 - 10x^2 - 7x + 50$

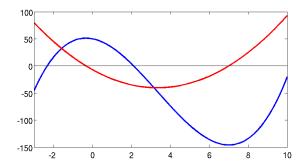


Then $f'(x) = 3x^2 - 20x - 7 = (3x + 1)(x - 7)$



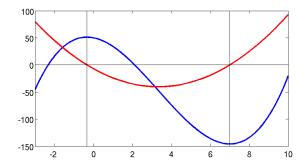
Monotonicity	Extreme values	Convexity	Inflection points	L'Hospital's theorem
An exampl	e			

Hence, f' has roots -1/3 and 7



Monotonicity	Extreme values	Convexity	Inflection points	L'Hospital's theorem
An examp	le			

- f (blue) increases wherever f' (red) is positive. Hence:
 - f'(x) > 0 for $x \in (-\infty, -1/3)$ and $x \in (7, \infty)$ implies: f is strictly increasing on $(-\infty, -1/3]$ and on $[7, \infty)$.
 - f'(x) < 0 in (−1/3,7) implies: f is strictly decreasing on [−1/3,7].



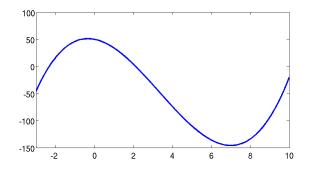
Monotonicity	Extreme values	Convexity	Inflection points	L'Hospital's theorem
Extreme	values			

Definition: Let $f : [a, b] \to \mathbb{R}$, and $x_0 \in [a, b]$.

- x_0 is called local minimum point if for a suitable $\delta > 0$ and all $x \in (b \delta, b + \delta) \cap [a, b], f(x_0) \leq f(x)$
- x_0 is called local maximum point if for a suitable $\delta > 0$ and all $x \in (b \delta, b + \delta) \cap [a, b], f(x_0) \ge f(x)$
- x_0 is called global minimum point of f on [a, b] if for all $x \in [a, b], f(x_0) \le f(x)$.
- x_0 is called global maximum point of f on [a, b] if for all $x \in [a, b], f(x_0) \ge f(x)$.
- The local (or global) minimum and maximum points are called local (or global) extrema.

Note: Global extrema are local extrema as well.

The function $f(x) = x^3 - 10x^2 - 7x + 50$ has two local maximum and two local minimum points in the interval [-3, 10] (which will be determined later).



Extreme values and monotonicity

Theorem 2

Let $f : [a, b] \rightarrow \mathbb{R}$, and $x \in [a, b]$.

- Suppose that f is decreasing in (x − δ, x] ∩ [a, b], and increasing in [x, x + δ), for some δ > 0. Then x is a local minimum point.
- Suppose that f is increasing in (x − δ, x] ∩ [a, b], and decreasing in [x, x + δ), for some δ > 0. Then x is a local maximum point.

Informally:

- If f increases to the left of x and decreases to the right of x, then x is a local maximum point.
- For the boundary points *a*, *b*, only one-sided behaviour must be considered.

Extreme values and the first derivative

Theorem 3.

Let $f:[a,b] \to \mathbb{R}$ be continuous, and differentiable on (a,b).

• If
$$x \in [a, b]$$
 is such that $f'(y) \leq 0$ for all $y \in (x - \delta, x) \cap [a, b]$, and $f'(y) \geq 0$ for all $y \in (x, x + \delta) \cap [a, b]$, then f is a local minimum point

• If
$$x \in [a, b]$$
 is such that $f'(y) \ge 0$ for all $y \in (x - \delta, x) \cap [a, b]$, and $f'(y) \le 0$ for all $y \in (x, x + \delta) \cap [a, b]$, then f is a local maximum point.

• If $x \in (a, b)$ is a local extremum point, then f'(x) = 0.

The analogous statements, with reversed inequalities, holds for local minimum points.

Note: The condition f'(x) = 0 (for an inner point) is only necessary, not sufficient. For sufficient criteria, we need higher derivatives.

Extreme values and higher derivatives

Theorem 4. Assume that $f : [a, b] \to \mathbb{R}$ is 2k times differentiable, for some $k \in \mathbb{N}$. Let $a < x_0 < y$ be such that

$$f'(x_0) = f''(x_0) = \ldots = f^{(2k-1)}(x_0) = 0$$
.

- If $f^{(2k)}(x_0) < 0$, then f has a local maximum at x_0 .
- If $f^{(2k)}(x_0) > 0$, then f has a local minimum at x_0 .
- If $f^{(2k)}(x_0) = 0$, and f is 2k + 1 times differentiable with $f^{(2k+1)}(x_0) \neq 0$, then f has neither a local maximum nor a local minimum at x_0 . (x_0 is a saddle point.)

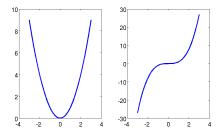
Example: Integer powers

Consider $f(x) = x^n$, with $n \in \mathbb{N}$. Then

$$f'(0) = f''(0) = \ldots = f^{(n-1)}(0) = 0$$
, $f^{(n)}(0) = n! > 0$.

Hence

- If n is even, say n = 2k, then $x_0 = 0$ is a local minimum point.
- If n is odd, say n = 2k + 1, there is no local extremum at $x_0 = 0$



Monotonicity

Example: Determining local and global extrema

We are interested in local and global extrema of $f(x) = x^3 - 10x^2 - 7x + 50$ on the interval [-3, 10]. Recalling that

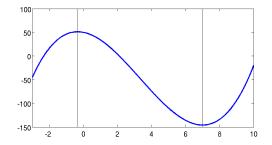
$$f'(x) = 3x^2 - 20x - 7 = (3x + 1)(x - 7), f''(x) = 6x - 20$$

we determine the following possible candidates for local extrema:

- Left boundary: x = −3. Because of f'(−3) = 80 > 0, x = −3 is a local minimum, with f(−3) = −46.
- First root: x = −1/3. We have f''(−1/3) = −22 < 0, which makes x = −1/3 a local maximum.
- Second root: x = 7. Here f"(7) = 22 > 0, hence x = 7 is a local minimum with f(7) = −146.
- Right boundary: x = 10. Because of f'(10) = 93 > 0, x = 10 is a local maximum, with f(x) = −20.

Comparing local extrema, we find that

- $x_{\min} = 7$ is a global minimum point in [-3, 10].
- $x_{\text{max}} = -1/3$ is a global maximum point in [-3, 10].



Back to the initial example

We study the function $f(x) = 2x^2 - \sqrt{x}$ on the interval [0, 1]. f is continuous on [0, 1] and differentiable on (0, 1).

• $f'(x) = 4x - \frac{1}{2}x^{-1/2}$. Hence

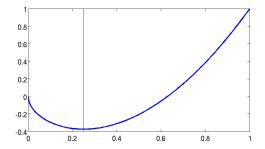
$$f'(x) = 0 \Leftrightarrow 4x = rac{1}{2}x^{-1/2} \Leftrightarrow x^{3/2} = rac{1}{8} = \left(rac{1}{2}
ight)^3$$

hence $f'(x_0) = 0$ only for $x_0 = \frac{1}{4}$.

- $f''(x) = 4 + \frac{1}{4}x^{-3/2} > 0$, for all $x \in (0, 1)$. In particular, f''(1/4) > 0, which makes 1/4 a local minimum point.
- For x < 1/4, we have 4x < 1, and $x^{-1/2} > 1/2$. Hence f'(x) < 0, and f is strictly decreasing on [0, 1/4].
- Similarly, f'(x) > 0 for x > 1/4, and f is strictly increasing.
- In particular, 0 is a local maximum point, and 1 is a local minimum point.

Back to the initial example

Conclusion: f strictly decreases on [0, 1/4], and strictly increases on [1/4, 1]. The boundaries are local maximum point, 1/4 is the unique local minimum point, which is therefore global. f(1) = 1 is the maximum of f on [0, 1], and f(1/4) = -0.375 the minimum.



Application: Deriving inequalities

We want to prove the inequality

$$\sin(x) \geq \frac{2x}{\pi}$$

for all $x \in [0, \pi/4]$. For this purpose we let $f(x) = \sin(x) - \frac{2x}{\pi}$. We then need to show that $f(x) \ge 0$ for all $x \in [0, \pi/4]$. We make the following observations:

•
$$f(0) = 0$$
.

•
$$f'(x) = \cos(x) - \frac{2}{\pi}$$
.
cos is decreasing on $[0, \pi/4]$, hence

$$f'(x) \ge f'(\pi/4) = \cos(\pi/4) - \frac{2}{\pi} = \approx 0.0705 > 0$$

• Hence f increases on $[0, \pi/4]$, in particular $f(x) \ge f(0) = 0$.

Definition. A function $f : [a, b] \to \mathbb{R}$ is called convex if for all $x, y \in [a, b]$ and all $0 < \lambda < 1$:

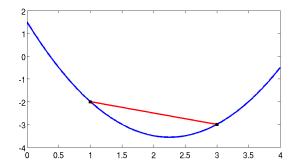
$$f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y) \;.$$

f is called concave if -f is convex.

Note: As λ runs through (0, 1), the points $(\lambda x + (1 - \lambda)y, \lambda f(x) + (1 - \lambda)f(y))$ run through all points on the secant between x and y. Thus, convexity means that the secant between two points on the graph is above (or on) the graph.

Graphically, convexity means that the graph of f curves upwards.

Graphically: The function $f : [a, b] \to \mathbb{R}$ is convex iff for all x, y, the secant between x and y is above the graph of f:



Convexity and the second derivative

Theorem 5. Let $f : [a, b] \to \mathbb{R}$ be differentiable. Then f is convex iff f' is increasing. In particular, if f is twice differentiable, f is convex iff for all $x \in (a, b), f''(x) \ge 0$.

Example: The function $f(x) = x^k$ (with $k \in \mathbb{N}$) is convex on \mathbb{R} iff $k \leq 1$, or if k is even:

- If $k \le 1$, then $f''(x) = 0 \ge 0$.
- If k is even, then $f''(x) = k(k-1)x^{k-2} \ge 0$, because k-2 is even.
- If k is odd, then $f''(x) \le 0$ for $x \le 0$, hence f is concave on $(-\infty, 0]$, and $f''(x) \ge 0$ for $x \ge 0$ implies that f is convex on $[0, \infty)$.

Monotonicity	Extreme values	Convexity	Inflection points	L'Hospital's theorem
Inflection	points			

Definition. Let $f : [a, b] \to \mathbb{R}$ be a differentiable function. $x_0 \in (a, b)$ is called inflection point if it is a local extremum of f'.

Remarks:

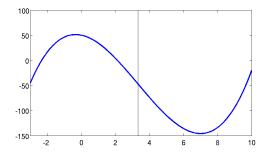
- At inflection points, *f* changes between convexity and concavity.
- Inflection points are determined from higher derivatives of f by applying Theorems 3 and 4 to f'. In particular, all inflection points are roots of the second derivative.

Example: Determining an inflection point

Consider $f(x) = x^3 - 10x^2 - 7x + 50$. Candidates for inflection points are the roots of f''. Here we have

$$f'(x) = 3x^2 - 20x - 7$$
, $f''(x) = 6x - 20$, $f'''(x) = 6 > 0$.

Hence $x_0 = \frac{10}{3}$ is an inflection point. f is concave on $(-\infty, 10/3]$, and convex on $[10/3, \infty)$.



Application: Inequalities from convexity

We want to prove the inequality

$$\sin(x) \geq \frac{2x}{\pi}$$

for all $x \in [0, \pi/2]$. For this purpose we let $f(x) = \sin(x) - \frac{2x}{\pi}$. We want to show $f \ge 0$ on $[0, \pi/2]$.

Noting that $f''(x) = -\sin(x) \le 0$, for all $x \in [0, \pi/2]$, we conclude that f is concave on $[0, \pi/2]$.

In particular, the secant between $0, \pi/2$ is below the graph of f. But

$$f(0)=0=f\left(\frac{\pi}{2}\right)$$

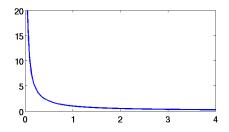
shows that the secant through $0, \pi/2$ is on the x-axis, hence $f(x) \ge 0$ for all $x \in [0, \pi/2]$.

Definition. Let $f: (a, b) \to \mathbb{R}$, and $x_0 \in \mathbb{R}$. Then $\lim_{x \to x_0} f(x) = \infty$ if

- There exists a sequence $(x_n)_{n\in\mathbb{N}}\subset (a,b)$ with $x_0=\lim_{n o\infty}x_n$
- For every sequence $(x_n)_{n\in\mathbb{N}}\subset (a,b)$ with $x_0=\lim_{n\to\infty}x_n$,

$$\lim_{n\to\infty}f(x_n)=\infty.$$

Example: $f(x) = \frac{1}{x}$, defined on (0, 1), fulfills $\lim_{x\to 0} f(x) = \infty$



L'Hospital's theorem

Theorem 6. Let $f, g: [a, b] \to \mathbb{R}$ be differentiable functions, and $x_0 \in [a, b]$. Assume that either

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0 \text{ or } \lim_{x \to x_0} |f(x)| = \lim_{x \to x_0} |g(x)| = \infty .$$

If there exists $y \in \mathbb{R}$ such that

$$y = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

then

$$y = \lim_{x \to x_0} \frac{f(x)}{g(x)}$$

Sample applications of L'Hospital's theorem

 Consider f(x) = sin(x)/x, for x ≠ 0. Both denominator and enumerator converge to 0 as x → 0. Hence, taking derivatives of both,

$$\lim_{x\to x_0}\frac{\sin(x)}{x} = \lim_{x\to 0}\frac{\cos(x)}{1} = 1$$

 Consider g(x) = cos(x)-1/x², for x ≠ 0. Both denominator and enumerator converge to 0 as x → 0. Taking derivatives of both gives sin(x)/x, which we know to converge. Hence

$$\lim_{x \to 0} \frac{\cos(x) - 1}{x^2} = \lim_{x \to 0} \frac{-\sin(x)}{2x} = -\frac{1}{2}$$

Note that we obtained this result by a repeated application of L'Hospital's theorem.

- Properties of curves: Monotonicity, local and global extrema, convexity
- Criteria based on derivatives
- A systematic analysis of functions is based on
 - Computation of derivatives.
 - Computation of roots, signs of derivatives on
 - Interpretation of signs and roots: Roots of f' correspond to extrema, roots of f'' to inflection points. The sign of f' corresponds to monotonicity, the sign of f'' to convexity.
- L'Hopital's theorem for the computation of limits.