

Calculus and Linear Algebra, Worksheet 3

to be discussed on 30 October 2008

Exercise 1.

- a) Consider the points $\mathbf{a} = (3, 1, 4)$, $\mathbf{b} = (0, 2, -3)$ and $\mathbf{c} = (3, -1, 3)$ in \mathbb{R}^3 . Prove that the triangle **abc** is a right triangle and calculate the length of the hypotenuse.
- b) Consider the points $\mathbf{a} = (2, 2, 0)$, $\mathbf{b} = (4, -2, 0)$ and $\mathbf{c}_{\alpha} = (3, 0, \alpha)$ ($\alpha \in \mathbb{R}, \alpha \neq 0$). Show that the three points built an isosceles triangle for any $\alpha \in \mathbb{R}, \alpha \neq 0$. Which $\alpha \in \mathbb{R}$ makes this triangle equilateral?

Exercise 2.

Find the components $a_1 (\leq 0)$, a_2 of the vector $\mathbf{a}^T = (a_1, a_2, -6, 4, -2)$ with $|\mathbf{a}| = 9$ and the components b_3, b_4, b_5 of the vector $\mathbf{b}^T = (20, -15, b_3, b_4, b_5)$ which is a multiple of \mathbf{a} .

Exercise 3.

- a) Consider the vectors $\mathbf{a} = (1, 3, -1)^T$, $\mathbf{b} = (3, 2, 1)^T$ and $\mathbf{c} = (1, 2, 3)^T$. Find:
 - i) all possible vector products with **a**, **b**, and **c**;
 - ii) the area *A* of the parallelogram defined by **a** and **b**;
 - iii) a vector $\mathbf{d} \in \mathbb{R}^3$ orthogonal to **a** and **b**.

b) Do i) - iii) for $\mathbf{a} = (1, 1, -2)^T$, $\mathbf{b} = (3, 2, -3)^T$ and $\mathbf{c} = (-2, 1, 1)^T$.

Notation: Let $\mathbf{e}^{(i)} \in \mathbb{R}^n$ denote the vector with coordinates $\mathbf{e}_i^{(i)} = 1$ and $\mathbf{e}_j^{(i)} = 0$ for $j \neq i$ (e.g. $\mathbf{e}^1 = (1, 0, 0)^T$, $\mathbf{e}^{(2)} = (0, 1, 0)^T$, $\mathbf{e}^{(3)} = (0, 0, 1)^T$ in \mathbb{R}^3).

Exercise 4.

Consider **b** = $(\sqrt{2}, 0, -1)^T$.

- a) Find $\mathbf{c} = (c_1, c_2, c_3)^T \in \mathbb{R}^3$ of length 2 that is perpendicular to **b** and forms the angle $\frac{\pi}{3}$ with $\mathbf{e}^{(2)}$.
- b) Find $\mathbf{a} = (a_1, a_2, a_3)^T$ of length 8 that is perpendicular to **b** and to $\mathbf{e}^{(1)} + \mathbf{e}^{(2)}$.

Exercise 5.

Consider the vectors $\mathbf{a} = (2, 1, 1)^T$ and $\mathbf{b} = (1, -1, -1)^T$. Find all vectors $\mathbf{x} = (x_1, x_2, x_3)^T \in \mathbb{R}^3$ with $(\mathbf{a} \times \mathbf{x}) \cdot \mathbf{b} = -9$ and $\mathbf{x} \cdot \mathbf{b} = 0$ such that the angle between \mathbf{a} and \mathbf{x} is $\frac{2\pi}{3}$.

Exercise 6.

- a) Consider the vectors $\mathbf{v}, \mathbf{a} \in \mathbb{R}^n$ with $\mathbf{a} \neq 0$. Calculate $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ such that \mathbf{x} is parallel to $\mathbf{a}, \mathbf{x} + \mathbf{y} = \mathbf{v}$ and $\mathbf{y} \perp \mathbf{a}$.
- b) Solve a) for $\mathbf{v} = (2, 3, 1)^T$ and $\mathbf{a} = (1, 1, 1)^T$.

Exercise 7.

Consider the straight line $\{(x_1, x_2)^T : x_2 = 2x_1 + 5\}$ in the plane. Find a parametric equation of the line and its Hesse normal form.

Exercise 8.

- a) Consider the points $\mathbf{p}_1 = (1, -2)$ and $\mathbf{p}_2 = (4, 2)$ in \mathbb{R}^2 .
 - i) Find an equation in parametric form of the straight line $\mathbb{L}\subset \mathbb{R}^2$ that passes through p_1 and $p_2.$
 - ii) Find the Hesse normal form of \mathbb{L} .
- b) Do i) and ii) for $p_1 = (1, 1)$ and $p_2 = (3, 4)$.

Exercise 9.

Find the straight line $\mathbb{L} \subset \mathbb{R}^2$ that intercepts the straight line $\mathbb{L}_1 = \{\mathbf{x} \in \mathbb{R}^2 : \mathbf{x} = (\sqrt{3}, -1)^T + \lambda(1, 3)^T\}$ at the point $\mathbf{p}_1 = (\sqrt{3}, 1)$ with angle $\frac{\pi}{4}$.

Exercise 10.

Let $\mathbb{L}_1 \subset \mathbb{R}^3$ be the straight line that goes through the points $\mathbf{p}_1 = (-2, -1, 6)$ and $\mathbf{p}_2 = (4, -4, 12)$.

- a) Write \mathbb{L}_1 in parametric form.
- b) Let \mathbb{L}_2 be another straight line that passes through the point $(0, 0, \alpha)$ in the direction of $(1, 0, 1)^T$.
 - i) For which value of α do \mathbb{L}_1 and \mathbb{L}_2 intercept each other?
 - ii) Calculate the interception point s of \mathbb{L}_1 and $\mathbb{L}_2.$

Exercise 11.

Let \mathbb{P}_1 be the plane that contains the points $\mathbf{p}_1 = (1,0,1)$, $\mathbf{p}_2 = (1,1,0)$ and $\mathbf{p}_3 = (2,2,1)$. Find the plane \mathbb{P} that is parallel to \mathbb{P}_1 and contains the point $\mathbf{p}_0 = (1,0,2)$. Write \mathbb{P} in parametric form and in Hesse's normal form. Is the point $\mathbf{0} = (0,0,0)$ between \mathbb{P} and \mathbb{P}_1 ?

Exercise 12.

Let $\mathbf{p} = (1,0,5)$ and $\mathbb{P} = {\mathbf{x} \in \mathbb{R}^3 : \mathbf{x} \cdot (1,2,-1)^T = -3}$ in \mathbb{R}^3 . Calculate the distance dist(\mathbf{p}, \mathbb{P}) between the point and the plane.

Exercise 13.

- a) Consider the equations of two parallel planes \mathbb{P}_1 and \mathbb{P}_2 in \mathbb{R}^3 written in HNF. Give a simple formula for the distance of the planes, using the Hesse normal forms of both planes.
- b) Calculate the distance between $\mathbb{P}_1 = \{\mathbf{x} \in \mathbb{R}^3 : \mathbf{x} \cdot (1, 1, -1)^T = 3\}$ and $\mathbb{P}_2 = \{\mathbf{x} \in \mathbb{R}^3 : \mathbf{x} \cdot (2, 2, -2)^T = -4\}.$

Exercise 14.

Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{a} = \begin{pmatrix} 1\\0\\2 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 2\\2\\3 \end{pmatrix}, \mathbf{c} = \begin{pmatrix} 3\\2\\5 \end{pmatrix}, \mathbf{d} = \begin{pmatrix} 0\\3\\-1 \end{pmatrix}, \mathbf{e} = \begin{pmatrix} \lambda\\2\\\lambda \end{pmatrix} (\lambda \in \mathbb{R}).$$

Determine whether the following subsets are linearly dependent or independent:

a)
$$\{a, b, c\}$$
, b) $\{a, d\}$, c) $\{b, c, d, e\}$, d) $\{b, e\}$,
e) $\{a, b, d\}$, f) $\{a, c, d\}$, g) $\{b, c, d\}$, h) $\{a, b, d\}$.