

Calculus and Linear Algebra, Worksheet 4

to be discussed on 6 November 2008

Exercise 1.

Investigate the position of the plane

$$\mathbb{P} = \left\{ \mathbf{x} = (1, 2, 2)^T + \lambda (1, -2, 0)^T + \mu (4, 0, 2)^T : \lambda, \mu \in \mathbb{R} \right\}$$

relative to the line

$$\mathbb{L} = \left\{ \mathbf{x} = (0, 1, 1)^T + \alpha (5, -2, 2)^T : \alpha \in \mathbb{R} \right\}$$

in \mathbb{R}^3 . Depending on the result calculate the interception set or the distance dist(\mathbb{L}, \mathbb{P}).

Exercise 2.

Consider the points $\mathbf{q} = (2, 2, 4)$ and $\mathbf{p}_{\lambda} = (\lambda, 2 + \lambda, 1)$, where $\lambda \in \mathbb{R}$, and the line

$$\mathbb{L} = \left\{ \mathbf{x} = (2,1,0)^T + \mu(-2,0,4)^T : \mu \in \mathbb{R} \right\}$$

in \mathbb{R}^3 . Let \mathbb{P}_{λ} be the plane such that **q** is the interception point between \mathbb{P}_{λ} and the line that goes through \mathbf{p}_{λ} and is perpendicular to \mathbb{P}_{λ} .

- a) Find an equation for \mathbb{P}_{λ} . Does \mathbb{P}_{λ} contain the origin?
- b) For which $\lambda \in \mathbb{R}$ is the line \mathbb{L} not parallel to \mathbb{P}_{λ} ? For this λ calculate the interception point \mathbf{s}_{λ} of \mathbb{L} and \mathbb{P}_{λ} . For all the other values of λ calculate dist(\mathbb{P}_{λ} , \mathbb{L}).

Exercise 3.

Find all solutions of the following systems Ax = b of linear equations.

a)
$$A = \begin{pmatrix} 2 & -1 & 4 & 4 \\ 1 & 0 & 4 & 2 \\ -1 & 3 & -9 & -2 \\ 4 & -4 & 7 & 8 \\ 1 & -4 & 4 & 2 \end{pmatrix}$$
, $b = \begin{pmatrix} 1 \\ 4 \\ 0 \\ -5 \\ -8 \end{pmatrix}$
b) $A = \begin{pmatrix} 0 & 1 & 1 & 2 \\ 1 & 5 & -1 & -3 \\ 3 & 1 & 0 & -1 \\ 2 & -1 & 3 & 5 \\ 5 & 0 & -1 & 1 \end{pmatrix}$, $b = \begin{pmatrix} 2 \\ 0 \\ 4 \\ 9 \\ 0 \end{pmatrix}$
c) $A = \begin{pmatrix} 0 & 1 & 1 & 2 \\ 1 & 5 & -1 & -3 \\ 1 & 6 & 0 & -1 \end{pmatrix}$, $b = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}$
d) $A = \begin{pmatrix} 2 & 1 & 4 & 2 & 1 \\ 4 & 2 & 8 & 0 & 2 \\ -2 & -1 & 2 & 2 & 1 \\ 2 & 1 & 3 & 0 & 0 \end{pmatrix}$, $b = \begin{pmatrix} 0 \\ -1 \\ 4 \\ 1 \end{pmatrix}$.

Exercise 4.

Find the sets $S(A, b^{(i)})$ of solutions of the systems of linear equations $Ax = b^{(i)}$, where i = 1, 2, 3.

a)
$$A = \begin{pmatrix} 27 & 1 & 11 \\ 28 & 1 & 12 \\ 29 & 1 & 13 \end{pmatrix}$$
, $b^{(1)} = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}$, $b^{(2)} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$, $b^{(3)} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.
b) $A = \begin{pmatrix} 15 & 2 & 17 \\ 7 & 1 & 8 \\ 20 & 3 & 23 \end{pmatrix}$, $b^{(1)} = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}$, $b^{(2)} = \begin{pmatrix} -1 \\ 1 \\ 6 \end{pmatrix}$, $b^{(3)} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.

Exercise 5.

Find the solution of the following systems of equations using the Gauss algorithm.

a)
$$2x_1+4x_2+2x_3-2x_4=5$$
 b) $2x_1+4x_2+2x_3-2x_4=0$ c) $x_1+3x_2-4x_3+3x_4=9$
 $x_1+2x_2+4x_3=4$ $x_1+2x_2+4x_3=0$ $3x_1+9x_2-2x_3-11x_4=-3$
 $-2x_1-4x_2-10x_3+3x_4=-9$ $-2x_1-4x_2-10x_3+3x_4=1$ $4x_1+12x_2-6x_3-8x_4=6$
 $4x_1+8x_2-10x_3-8x_4=3$ $4x_1+8x_2-10x_3-8x_4=0$ $2x_1+6x_2+2x_3-14x_4=-12$
 $2x_1+4x_2+4x_3-4x_4=6$ $2x_1+4x_2+4x_3-4x_4=0$

Exercise 6.

Find the values of $\mu \in \mathbb{R}$ for which following systems of equations have a solution.

a)
$$x_1 + x_2 + x_3 = 1$$
 b) $x_2 - x_3 + 2x_4 = 6$ c) $x_1 + x_2 + 3x_3 = 2$
 $-x_1 + 2x_3 = 2$ $2x_1 - x_2 + 3x_3 = -4$ $2x_1 + 2x_2 + 7x_3 = 5$
 $3x_1 + 2x_2 = \mu$ $\mu x_1 + x_3 = -1$ $\mu^2 x_1 + \mu x_2 + 4x_3 = 4$
 $3x_1 - x_2 + 4x_3 = -5$

Exercise 7.

Let $\mu, \nu \in \mathbb{R}$. Investigate the solution of the following systems of equations and interpret the result geometrically.

a)
$$2x-2y=1$$
 b) $x+y=1$ c) $x+2y=2$ d) $x+\mu y+2z=1$
 $x+y=2$ $-x-y=-2$ $3x+4y=8$ $4x+2y+2\mu z=-2$
 $x-y=1$ $x+2\nu y+2z=3$

Exercise 8.

For which $\alpha \in \mathbb{R}$ does the homogeneous linear system $A_{\alpha}x = 0$ have solutions different from **0**? Find the set $S(A_{\alpha}, 0)$ of solutions.

a)
$$A_{\alpha} = \begin{pmatrix} -2 & 4 & 3 \\ 1 & 3 & 5 \\ -4 & -2 & \alpha \end{pmatrix}$$
 b) $A_{\alpha} = \begin{pmatrix} 2 & 3 & -1 \\ 2 & 2 & \alpha \\ 1 & 2 & 4 \end{pmatrix}$

Exercise 9.

Let M_1 , M_2 , M_3 be metal alloys that contain copper, silver and gold in the following percentages. M_1 consists of 20% copper, 60% silver and 20% gold, M_2 consists of 70% copper, 10% silver and 20% gold, and M_3 consists of 50% copper and 50% silver.

- a) Is it possible to mix M_1, M_2, M_3 to get a new alloy that contains 40% copper, 50% silver and 10% gold?
- b) How high is the percentage of silver in the alloy that contains four times as much M_1 as M_2 , and five times as much M_3 as M_2 ?
- c) What is the percentage of M_3 in an alloy that consists of 5% gold?