

# Calculus and Linear Algebra, Worksheet 8

to be discussed on Thursday, 4 December 2008

## Exercise 1.

Let *f* by the function given by

a) 
$$f(x) = 1 + \frac{2x}{|x|} - (1 - |x|)^2;$$
 b)  $f(x) = \frac{2}{3} \frac{|x^2 - 4|}{x - 2};$  c)  $f(x) = \frac{x^2 - 3x + 2}{x - 2};$   
d)  $f(x) = \frac{x^3 - 7x^2 + 16x - 12}{|x^2 + x - 6|};$  e)  $f(x) = \frac{\sqrt{4 - x} - \sqrt{4 - x^2}}{|x| - 1|};$  f)  $f(x) = \frac{x}{1 + x};$   
g)  $f(x) = \frac{x^2 + 3x + 2}{x - 2};$  h)  $f(x) = -|x - 1|.$ 

Calculate the domain of continuity C(f). Are there any points where the discontinuity of f is removable?

## Exercise 2.

Investigate the continuity of the following functions at the point (0,0). Let f(0,0) = 0 and for  $(x,y) \neq (0,0)$  let f(x,y) =

a) 
$$\frac{3x^2 + 2y^2}{x^2 + y^2}$$
 b) 
$$\frac{x^3y^2}{(x^2 + y^2)^{5/2}}$$
 c) 
$$\frac{x^4 + y^4}{(x^2 + y^2)^{3/2}}$$
 d) 
$$\frac{x^2y}{x^2 + y^2}$$
  
e) 
$$\frac{\sqrt{x^2y^2 + 1} - 1}{x^2 + y^2}$$
 f) 
$$\frac{x^2y}{y^2 + x^4}$$
 g) 
$$\frac{x^2 - y^2}{(x^2 + y^2)^{\alpha/2}}$$
 with  $\alpha \in \mathbb{R}$ 

## Exercise 3.

Let *f* be defined as below. Show that *f* is continuous and stricly monotonic on the given domain. Determine the inverse mapping  $f^{-1}$  and the domain of  $f^{-1}$ .

a) 
$$f(x) = \frac{ax+b}{cx+d}$$
  $(ad-bc \neq 0, c \neq 0, a, b, c, d \in \mathbb{R}), x \in (-\frac{d}{c}, \infty);$   
b)  $f(x) = x^3 + 1, x \in \mathbb{R};$   
c)  $f(x) = \sqrt{1-x^2}, x \in [0,1];$   
d)  $f(x) = \frac{x}{1-x^2}, x \in (-1,1).$ 

#### **Exercise 4.**

Let *f* be the piecewise defined function as given below. Calculate the domain D(f), the domain of continuity C(f), the roots of *f* and the limits of *f* at the boundaries of D(f). Does *f* have a maximum or a minimum?

a) 
$$f(x) = \begin{cases} \frac{5}{2x}, & x < -1 \\ x^2 - \frac{7}{2}, & -1 \leqslant x \leqslant 2 \\ \frac{1}{x-1}, & x > 2 \end{cases}$$
 b)  $f(x) = \begin{cases} \frac{-x}{1-x}, & x < 0 \\ x, & 0 \leqslant x \leqslant 1 \\ x^2, & x > 1 \end{cases}$   
c)  $f(x) = \begin{cases} 2 - x^2, & |x| < 2 \\ -\frac{4}{|x|}, & |x| \ge 2 \end{cases}$  d)  $f(x) = \begin{cases} \frac{1}{3}x - \frac{2}{3}, & x < -1 \\ 2x + 1, & x \ge -1 \end{cases}$   
e)  $f(x) = \begin{cases} |x|, & x \leqslant 0 \text{ or } x \ge 1 \\ \frac{1}{x}, & 0 < x < 1 \end{cases}$ 

#### Exercise 5.

Let *f* be given by

a)  $f(x) = x^4 - x - 10;$  b)  $f(x) = x^2 - 3;$  c)  $f(x) = 3x^3 - 17x^2 + 23x - 5.$ 

Determine the sign of f(x) for x = 0, 1, 2, ... to determine the number of positive roots of f. These roots can be approximated via the interval subdivision method. Calculate the positive roots with an error less than  $10^{-2}$ .

## Exercise 6.

Solve the inequalities of Worksheet 1 Exercise 7 in the following way. Find an equivalent inequality  $\begin{cases} f(x) < 0 \\ f(x) \leq 0 \end{cases}$ , where *f* is a continuous function. Then compute the roots  $-\infty < x_1 < x_2 < \ldots < x_n < \infty$  of *f* and determine the sign of *f* on the intervals  $(x_i, x_{i+1})$  by evaluating  $f(y_i)$  for some arbitrary  $y_i \in (x_i, x_{i+1})$  (for  $i = 0, 1, \ldots, n$  with  $x_0 = -\infty$  and  $x_n = \infty$ ).