Lie-Gruppen, Übungsblatt 9

Wird am Montag, dem 12.1.2009, 9:45 Uhr besprochen

Aufgabe 1

Es sei (i, H) eine Lie-Untergruppe von G mit $\dim(H) = \dim(G)$. Zeigen Sie: $i(H) \subset G$ ist offen.

Aufgabe 2

- (a) Es sei $\mathfrak{h} \subset \mathfrak{su}(2)$ eine Lie-Unteralgebra. Zeigen Sie dim $(\mathfrak{h}) \in \{1,3\}$.
- (b) Es sei H eine zusammenhängende Lie-Untergruppe von SU(2). Zeigen Sie: Entweder $H \cong SU(2)$, oder $H \cong \mathbb{T}$. Speziell ist H abgeschlossen.

(Hinweis: Jedes Element von $\mathfrak{su}(2)$ ist konjugiert zu einer Matrix $\begin{pmatrix} ia & 0 \\ 0 & -ia \end{pmatrix}$, mit $a \in \mathbb{R}$ geeignet.)

Aufgabe 3

Es sei G eine Lie-Gruppe, $H \subset G$ eine Untergruppe, G/H der Raum der Linksnebenklassen. Es sei $p: G \to G/H$ die kanonische Projektion, p(x) = xH. G/H sei mit der Quotiententopologie versehen, d.h. $U \subset G/H$ offen genau dann, wenn $p^{-1}(U) \subset G$ offen.

- (a) p ist offen und stetig. Die Operation von G auf G/H, gegeben durch die Abbildung $G \times G/H \ni (x,yH) \mapsto xyH \in G/H$, ist stetig.
- (b) G/H ist ein Hausdorff-Raum genau dann, wenn H abgeschlossen ist.
- (c) G/H ist A_2 -Raum.
- (d) G/H ist diskret genau dann, wenn H offen ist.