Lie-Gruppen, Übungsblatt 10

Wird am Montag, dem 19.1.2009, 9:45 Uhr besprochen

Aufgabe 1

Es seien $A \subset SL(2,\mathbb{R})$ die Untergruppe der Diagonalmatrizen in $SL(2,\mathbb{R})$ mit positiven Einträgen, und N die Untergruppe der oberen Dreiecksmatrizen mit Einsen auf der Diagonalen. Dann ist AN die Untergruppe aller oberen Dreiecksmatrizen mit positiven Diagonaleinträgen. Zeigen Sie:

- (a) Die Abbildung $SO(2) \times A \times N \ni (k, a, n) \mapsto kan \in SL(2, \mathbb{R})$ ist ein Diffeomorphismus. Folgern Sie: $SL(2, \mathbb{R})$ ist zusammenhängend, und $GL(2, \mathbb{R})$ hat zwei Zusammenhangskomponenten.
- (b) Zeigen Sie, für alle $X \in \mathfrak{sl}(2,\mathbb{R}) \setminus \{0\}$, daß ad(X) Rang zwei hat.
- (c) Es seien $X, Y \in \mathfrak{sl}(2, \mathbb{R})$ mit [X, Y] = X. Zeigen Sie, daß dann X nicht invertierbar ist. (Hinweis: Führen Sie einen Widerspruchsbeweis, und betrachten Sie Spur $(XYX^{-1} Y)$.)
- (d) Sei (i, H) eine zusammenhängende Lie-Untergruppe von $SL(2, \mathbb{R})$ mit dim(H) = 2. Zeigen Sie, daß es dann $k \in SO(2)$ gibt mit $ki(H)k^{-1} = AN$. Speziell ist i(H) abgeschlossen. (Hinweis: Aus (b) folgt, daß die Lie-Algebra \mathfrak{h} von H zweidimensional und nicht kommutativ ist. Dann wird $di_e(\mathfrak{h})$ von zwei Elementen X, Y mit [X, Y] = X aufgespannt. Zeigen Sie, daß der Kern von X auch invariant unter Y ist.)
- (e) Es sei (i, H) eine zusammenhängende, Lie-Untergruppe von $SL(2, \mathbb{R})$, und i(H) ein Normalteiler. Dann ist entweder H trivial oder $i(H) = SL(2, \mathbb{R})$.

Bemerkung: Die Faktorisierung g = kan heißt *Iwasawa-Zerlegung* von $g \in SL(2, \mathbb{R})$.

Aufgabe 2

Sei M eine Mannigfaltigkeit, auf der die Lie-Gruppe G glatt operiert. Auf dem Bahnenraum $M/G = \{G \cdot x : x \in M\}$ betrachten wir die Quotiententopologie: $U \subset M/G$ offen genau dann, wenn $\{x \in M : G \cdot x \in U\} \subset M$ offen ist.

(a) Es sei G kompakt. Zeigen Sie: Die Quotiententopologie auf M/G ist Hausdorffsch.

- (b) Geben Sie ein Beispiel einer glatten, nichttransitiven Operation einer Lie-Gruppe *G* auf einer Mannigfaltigkeit *M* an, bei der jeder Orbit dicht ist. Geben Sie die Quotiententopologie hier explizit an.
 - (Hinweis zur Konstruktion: Sie können M als Lie-Gruppe wählen, und dazu eine geeignete Lie-Untergruppe G.)