Ideale und positive Funktionale

Vortrag zum Seminar zur Funktionalanalysis, 04.12.2009

Sophia Dahmen

In diesem Vortrag werden positive Elemente einer C^* -Algebra und die approximierende Eins eingeführt und die wichtigsten Eigenschaften von Idealen und Homomorphismen in C^* -Algebren erarbeitet.

§1 Positive Elemente einer C*-Algebra

Sei \mathcal{A}_{sa} die Menge aller selbstadjungierten Elemente aus \mathcal{A} , das heißt sie enthält alle $a \in \mathcal{A}$ für die gilt $a^* = a$. Weiterhin sei Ω ein lokal kompakter Hausdorffraum und $\mathcal{A} = C_0(\Omega)$. Dann ist \mathcal{A}_{sa} die Menge der reellwertigen Funktionen in \mathcal{A} . Auf \mathcal{A}_{sa} wird eine Halbordnung definiert durch $f \leq g$ genau dann, wenn $f(\omega) \leq g(\omega)$ für alle $\omega \in \Omega$. Ein Element $f \in \mathcal{A}_{sa}$ heißt positiv genau dann, wenn $f(\omega) \geq 0$ für alle $\omega \in \Omega$ gilt. In diesem Fall besitzt f eine eindeutig bestimmte positive Wurzel in \mathcal{A} , und zwar $\omega \mapsto \sqrt{f(\omega)}$. Falls bereits $f = \bar{f}$ gilt (das heißt f reelwertig), kann man die Positivität von f auch wie folgt definieren: f ist positiv, wenn $\|f - t\| \leq t$ für ein $t \in \mathbb{R}_+$. Umgekehrt folgt aus $\|f\| \leq t$ und $f \geq 0$ auch $\|f - t\| \leq t$.

<u>Dazu:</u> \Rightarrow : Angenommen es existiert ein $\tilde{\omega} \in \Omega$ mit $f(\tilde{\omega}) < 0$ und es gilt $||f - t|| \le t$ für alle $t \in \mathbb{R}_+$. Dann gilt

$$|f(\tilde{\omega}) - t| \le \sup_{\omega \in \Omega} |f(\omega) - t| = ||f - t|| \le t$$

$$\Rightarrow |f(\tilde{\omega}) - t| = -f(\tilde{\omega}) + t \le t \Rightarrow -f(\tilde{\omega}) \le 0 \Rightarrow f(\tilde{\omega}) \ge 0.$$

Dies ist ein Widerspruch zur Annahme und somit ist *f* positiv.

 \Leftarrow : Sei $f \ge 0$ und $||f|| \le t$ für ein $t \in \mathbb{R}_+$. Daraus erhält man $||f|| - t \le 0$ und dann folgt:

$$||f - t|| = \sup_{\omega \in \Omega} |f(\omega) - t| = |||f|| - t| = t - ||f|| \le t.$$

Damit gilt also auch die Rückrichtung.

Im folgenden Abschnitt sollen diese Begriffe nun auch für beliebige C^* -Algebren definiert und untersucht werden. Dabei werden wir häufig die beiden folgenden Hilfsaussagen verwenden:

(1.1) Lemma

1. Sei \mathcal{A} eine C^* -Algebra und \mathcal{B} eine C^* -Unteralgebra, dann gilt $\sigma_{\mathcal{B}}(b) \cup \{0\} = \sigma_{\mathcal{A}}(b) \cup \{0\}$ für alle $b \in \mathcal{B}$.

 \Diamond

2. Das Spektrum eines selbstadjungierten Elementes ist reell.

Beweis

- 1. Siehe 3. Vortrag Satz (4.4)
- 2. Siehe G.J. Murphy: "*C**-Algebras and Operator Theory", Kapitel 2, Theorem 2.1.8. oder unter Verwendung der Gelfand-Transformation zu der von a erzeugten *C**-Algebra. □

(1.2) Definition

Sei \mathcal{A} eine beliebige C^* -Algebra. Dann nennt man $a \in \mathcal{A}$ positiv, falls gilt $a = a^*$ und $\sigma(a) \subseteq \mathbb{R}_+$. Man schreibt dafür auch $a \geq 0$ und mit \mathcal{A}^+ bezeichnet man die Menge der positiven Elemente in \mathcal{A} .

(1.3) Beispiel

Sei S eine nicht-leere Menge, dann ist $\ell^{\infty}(S)$, die Menge der beschränkten komplexwertigen Funktionen, eine C^* -Algebra. Dazu werden die Operationen jeweils punktweise definiert, es gilt $f^* = \bar{f}$ und man verwendet die Supremumsnorm. $f \in \ell^{\infty}(S)$ ist positiv im obigen Sinne genau dann, wenn f reelwertig ist und $f(x) \geq 0$ für alle $x \in S$, da $\sigma(f)$ dem Bild von f entspricht.

(1.4) Satz

Sei \mathcal{A} eine C^* -Algebra und $a \in \mathcal{A}^+$. Dann existiert ein eindeutig bestimmtes $b \in \mathcal{A}^+$, sodass gilt $b^2 = a$. Dann heißt b positive Wurzel von a.

Beweis

Existenz: Sei $\mathcal B$ die von a erzeugte C^* -Algebra. Dann ist $\mathcal B$ kommutative C^* Algebra, da a hermitesch ist und es sich um den Abschluss aller Polynome in a mit konstantem Term 0 handelt. Daher ist $C_0(\sigma(\mathcal B))$ nach dem Satz von Gelfand-Naimark isomorph zu $\mathcal B$. Zu $\hat a \in C_0(\sigma(\mathcal B))$ existiert ein Element $\hat b = \sqrt{\hat a} \in C_0(\sigma(\mathcal B))$ mit der Eigenschaft $\hat b^2 = \hat a$. Da die Gelfand-Transformation injektiv und multiplikativ ist, folgt die Existenz eines $b \in \mathcal B$ mit $b^2 = a$. Da $\hat b$ nur positive reelle Werte annimmt und b in $\mathcal B$ liegt, folgt nach Vortrag 2 Satz (2.2.c), dass $\sigma(b) \geq 0$ ist.

Eindeutigkeit: Sei nun $c \in \mathcal{A}^+$ ein weiteres Element mit der Eigenschaft $c^2 = a$. Es gilt $ac = c^3 = ca$, woraus folgt, dass a und c kommutieren. Da b aber in \mathcal{B} liegt, handelt es sich um den Grenzwert einer Folge von Polynomen in a und es folgt, dass auch b und c kommutieren. Sei nun \mathcal{C} die von b und c erzeugte kommutative C^* -Algebra. Betrachtet man die zugehörige Gelfand-Transformation $\Gamma: \mathcal{C} \to C_0(\sigma(\mathcal{C}))$, dann sind \hat{b} und \hat{c} beides positive Wurzeln von \hat{a} . Daraus folgt nun aber $\hat{b} = \hat{c}$ und da die Gelfand-Transformation nach dem Satz von Gelfand-Naimark insbesondere injektiv ist, gilt somit b = c.

 \Diamond

(1.5) Bemerkung

- 1. Sei A eine C^* -Algebra und a ein positives Element. Dann bezeichnet $a^{1/2}$ die eindeutig bestimmte positive Wurzel b.
- 2. Ist *c* hermitesch, so ist c^2 positiv und wir definieren $|c| = (c^2)^{1/2}$.
- 3. Wir setzen $c^+ = 1/2(|c|+c)$ und $c^- = 1/2(|c|-c)$. Dann sieht man leicht, dass $c^+ c^- = 1/2(|c|+c) 1/2(|c|-c) = c$ und $c^+c^- = 1/2(|c|+c) * 1/2(|c|-c) = 1/4(|c|^2-c^2) = 0$ gilt.

(1.6) Korollar

Bei c^+ , c^- und |c| handelt es sich um positive Elemente der C^* -Algebra A.

Beweis

Sei \mathcal{B} die von c erzeugte C^* -Algebra. Nun betrachtet man die zugehörige die Gelfand-Transformation. Das Bild von \hat{c} entspricht dem Spektrum von c und ist somit reellwertig, da c hermitesch ist. Damit ist das Bild von \hat{c}^2 positiv und damit auch das Spektrum von c^2 . Also ist c^2 positiv und besitzt damit nach Satz (1.3) eine positive Wurzel. c^+ und c^- liegen auch beide wieder in \mathcal{B} . Das Bild von \hat{c}^+ und \hat{c}^- ist reellwertig und positiv. Damit sind auch c^+ und c^- positiv.

(1.7) Bemerkung

Sei a hermitesch und ein Element der abgeschlossenen Einheitskugel einer unitären C^* -Algebra. Dann folgt aus der Gelfand-Transformation zu der von 1 und a erzeugten Algebra, dass $1-a^2\in \mathcal{A}^+$. Weiterhin sind die Elemente $u=a+i\sqrt{1-a^2}$ und $v=a-i\sqrt{1-a^2}$ unitär, das heißt es gilt $vv^*=v^*v=(a+i\sqrt{1-a^2})(a-i\sqrt{1-a^2})=a^2+1-a^2=1$ und analog $u^*u=uu^*=1$. Des Weiteren gilt a=1/2(u+v), woraus folgt, dass \mathcal{A}_{sa} von unitären Elementen aufgespannt wird.

(1.8) Lemma

Sei \mathcal{A} eine C^* -Algebra mit 1, $t \in \mathbb{R}$ und $a \in \mathcal{A}$ hermitesch. Dann gilt $a \geq 0$, falls $||a-t|| \leq t$. Umgekehrt folgt aus $||a|| \leq t$ und a positiv, dass gilt $||a-t|| \leq t$.

Beweis

Sei \mathcal{B} die von 1 und a erzeugte abelsche C^* -Algebra.

 \Leftarrow : Mit den Vorüberlegungen zu Beginn des Paragraphen gilt nun, dass aus $\|\hat{a} - t\| = \|a - t\| \le t$ folgt, dass \hat{a} positiv ist. Damit ist aber auch a positiv, da das Bild von \hat{a} dem Spektrum von a entspricht.

 \Rightarrow : Sei $||a|| \le t$ und a positiv, dann ist das Bild von \hat{a} das Spektrum von a und somit ist \hat{a} positiv. Nun folgt mit den Vorüberlegungen und dem Satz von Gelfand-Naimark, da \mathcal{B} kommutativ ist, $||a-t|| = ||\hat{a}-t\hat{1}|| \le t$.

 \Diamond

 \Diamond

(1.9) Korollar

Die Summe von zwei positiven Elementen einer C^* -Algebra ist wieder positiv.

Beweis

Sei \mathcal{A} eine C^* -Algebra und seien $a,b\in\mathcal{A}^+$. Wir nehmen ohne Einschränkung an, dass \mathcal{A} unitär ist. Dann gilt nach den vorherigen Lemma $\|a-\|a\|\|\leq \|a\|$ und $\|b-\|b\|\|\leq \|b\|$. Damit erhält man

$$||a+b-||a|| - ||b||| \le ||a-||a||| + ||b-||b||| \le ||a|| + ||b||$$

Daraus folgt mit Lemma (1.8), dass a + b wieder positiv ist.

(1.10) Lemma

Sei A eine C^* -Algebra.

- 1. Zu jedem $a \in A$ existieren eindeutig bestimmte $b, c \in A_{sa}$ mit a = b + ic.
- 2. Für $a, b \in \mathcal{A}$ gilt $\sigma(ab) \setminus \{0\} = \sigma(ba) \setminus \{0\}$.

Beweis

1. Wähle $b=(a+a^*)/2$ und $c=i(a-a^*)/2$, dann gilt $b^*=b,c^*=c$ und $b+ic=1/2(a+a^*)+1/2(a-a^*)=a$. Zur Eindeutigkeit: Seien $b,c\in\mathcal{A}_{as}$ beliebig mit a=b+ic. Dann gilt

$$a + a^* = b + ic + b^* - ic^* = b + ic + b - ic = 2b$$

und $a - a^* = b + ic - b^* + ic^* = b + ic - b + ic = 2ic$

2. Sei $c \in A$ das Inverse zu 1 - ab. Dann gilt (1 - ab)c = c - abc = 1 = c - cab = c(1 - ab). Damit ist aber 1 + bca ein Inverses zu 1 - ba da gilt

$$(1 - ba)(1 + bca) = 1 + bca - ba - babca = 1 - ba + b(c - abc)a = 1$$

und $(1 + bca)(1 - ba) = 1 - ba + bca - bcaba = 1 - ba + b(c - cab)a = 1$

Damit ist 1-ab genau dann invertierbar, wenn 1-ba invertierbar ist und somit folgt die Behauptung.

(1.11) Satz

Sei a ein beliebiges Element aus einer C^* -Algebra \mathcal{A} , dann ist a^*a positiv.

Beweis

Zuerst zeigt man, dass a=0, falls $-a^*a\in\mathcal{A}^+$. Nach dem vorherigen Lemma gilt $\sigma(-a^*a)\setminus\{0\}=\sigma(-aa^*)\setminus\{0\}$. Damit folgt, dass auch gilt $-aa^*\in\mathcal{A}^+$. Nun besitzt a nach Lemma (1.10) eine Darstellung der Form a=b+ic mit $b,c\in\mathcal{A}_{sa}$. Damit erhält man $a^*a+aa^*=2b^2+2c^2$, woraus folgt $a^*a=2b^2+2c^2-aa^*\in\mathcal{A}^+$ nach Korollar (1.9). Daraus folgt nun dass $\sigma(a^*a)$ und $\sigma(-a^*a)$ beide positiv sind und somit muss gelten $\sigma(a^*a)=\{0\}$. Damit erhält man nun $\|a\|^2=\|a^*a\|=\|(\bar{a}\hat{a})\|=0$. Also gilt in diesem Fall a=0.

Sei nun a ein beliebiges Element aus \mathcal{A} und $b=a^*a$. Dann ist b hermitesch und nach Bemerkung (1.5) können wir $b=b^+-b^-$ mit $b^+,b^-\in\mathcal{A}^+$ schreiben. Nun setzt man $c=ab^-$ und dann gilt $-c^*c=-b^-a^*ab^-=-b^-(b^+-b^-)b^-=(b^-)^3\in\mathcal{A}^+$, da $b^+b^-=0$. Daraus folgt nun aber mit der ersten Überlegung, dass gilt c=0. Daraus folgt $(b^-)^3=0$ und mit der Gelfandtrasformation erhält man daraus $b^-=0$. Somit ist a^*a positiv.

(1.12) Lemma

Sei \mathcal{A} eine beliebige C^* -Algebra. Dann gilt

- 1. Auf der Menge A_{sa} wird eine Halbordnung definiert in dem man $a \leq b$ setzt, falls b a in A^+ liegt.
- 2. Für alle $a, b, c \in A_{sa}$ folgt aus $a \leq b$ stets $a + c \leq b + c$.
- 3. Für $a, b \in A_{sa}$ und $t \in \mathbb{R}^+$ folgt aus $a \leq b$, dass gilt $ta \leq tb$.
- 4. $a < b \Leftrightarrow -a > -b$.
- 5. Seien $a, b \in A_{sa}$ und $c \in A$. Dann folgt aus $a \leq b$, dass gilt $c^*ac \leq c^*bc$.
- 6. Aus $0 \le a \le b$ folgt $||a|| \le ||b||$.
- 7. Falls \mathcal{A} eine Eins enthält und a und b positive invertierbare Elemente aus \mathcal{A} sind, dann folgt aus $a \leq b$ stets $0 \leq b^{-1} \leq a^{-1}$.

Beweis

1. Bei der Relation \leq handelt es sich um eine Halbordnung auf \mathcal{A}_{sa} :

Reflexiv: Für alle $a \in \mathcal{A}_{sa}$ gilt $a - a = 0 \in \mathcal{A}_{sa}$ und $\sigma(0) = \{0\} \subseteq \mathbb{R}_+$. Daraus folgt, dass a - a in \mathcal{A}^+ liegt und somit gilt $a \leq a$ für alle $a \in \mathcal{A}_{sa}$.

Transitiv: Seien $a, b, c \in \mathcal{A}_{sa}$ und es gelte $a \leq b$ und $b \leq c$. Daraus folgt, dass b - a und c - b positiv sind. Damit ist nach 1. auch c - a = (c - b) + (b - a) positiv und somit folgt $a \leq c$, was zu zeigen war.

Antisymmetrisch: Seien $a, b \in \mathcal{A}_{sa}$ und es gelte $a \leq b$ und $a \geq b$. Daraus folgt, dass c = b - a und -c = a - b beide positiv sind. Damit ist aber $c^*c = c^2 = a$

(-c)(-c) nach (1.11) positiv. Dann muss aber nach (1.4) -c = c sein und dies ist nur der Fall, wenn c = 0. Daraus folgt dann a = b.

- 2. $a < b \Rightarrow b a \in A^+ \Rightarrow b + c c a \in A^+ \Rightarrow a + c < b + c$.
- 3. Mit Hilfe der Gelfand-Transformation kann man zeigen, dass aus $a \in \mathcal{A}^+$ und $t \in \mathbb{R}_+$ folgt, dass $ta \in \mathcal{A}^+$ gilt. Damit erhält man: $a \leq b \Rightarrow b a \in \mathcal{A}^+ \Rightarrow t(b-a) = tb ta \in \mathcal{A}^+ \Rightarrow ta \leq tb$.
- 4. $a \le b \Leftrightarrow b a \in \mathcal{A}^+ \Leftrightarrow -a (-b) \in \mathcal{A}^+ \Leftrightarrow -a \ge -b$.
- 5. Aus $a \le b$ folgt $b a \in A^+$. Damit besitzt b a nach (1.4) eine positive Wurzel d. Aus $(dc)^*(dc) \in A^+$ folgt

$$(dc)^*(dc) = c^*ddc = c^*(b-a)c = c^*bc - c^*ac \in A^+$$

Damit gilt $c^*ac \le c^*bc$.

6. Sei \mathcal{A} ohne Einschränkung unitär und \mathcal{B} die von b und 1 erzeugte kommutative C^* -Algebra. Dann gilt nach dem Satz von Gelfand-Naimark für alle $f \in \sigma(\mathcal{B})$:

$$\left(\left\|b\right\|\hat{1}-\hat{b}\right)(f)=\left(\left\|\hat{b}\right\|\hat{1}-\hat{b}\right)(f)=\left(\left(\sup_{g\in\sigma(\mathcal{B})}\left|\hat{b}(g)\right|\right)\hat{1}-\hat{b}\right)(f)\geq0$$

Damit ist aber auch $||b|| - b \in A^+$ und somit gilt $b \le ||b||$. Daraus folgt nun mit der Voraussetzung $a \le ||b||$. Da also das Spektrum von ||b|| - a positiv ist, ist auch das Bild der Gelfand-Transformation angewandt auf die von a und 1 erzeugte kommutative C^* -Algebra \mathcal{C} positiv. Es gilt also:

$$||b|| - ||a|| = ||b|| - ||\hat{a}|| = ||b|| - \sup_{f \in \sigma(\mathcal{C})} \hat{a}(f) \ge 0$$

Damit gilt $||a|| \le ||b||$, was zu zeigen war.

7. Sei $c \geq 1$. Dann ist c-1 positiv und daher liegt -1 nicht im Spektrum von c-1. Damit ist aber -c invertierbar und damit auch c. Des Weiteren folgt, $c^{-1} \leq 1$, wenn man die Gelfand-Transformation zu der von 1 und c erzeugten kommutative C^* -Algebra $\mathcal B$ betrachtet. Damit gilt nämlich $\hat c^{-1}(f) = \frac{1}{\hat c(f)} \leq 1$ für alle $f \in \sigma(\mathcal B)$. Sei nun $a \leq b$. Dann gilt mit der Vorüberlegung

$$1 = a^{-1/2}aa^{-1/2} \le a^{-1/2}ba^{-1/2} \Rightarrow (a^{-1/2}ba^{-1/2})^{-1} \le 1 \Rightarrow a^{1/2}b^{-1}a^{1/2} \le 1$$
$$\Rightarrow b^{-1} \le (a^{1/2})^{-1}(a^{1/2})^{-1} = a^{-1}$$

§2 Approximierende Eins

Falls eine C *-Algebra \mathcal{A} keine Eins enthält kann man zwar zu $\tilde{\mathcal{A}}$ übergehen, dieses Vorgehen ist aber nicht immer geeignet. Daher führen wir nun die approximierende Eins ein.

(2.1) Definition

Eine nicht leere Menge Λ mit Halbordnung \triangleleft , heißt *gerichtete Menge*, falls für alle $x, y \in \Lambda$ ein $z \in \Lambda$ existiert, sodass gilt $x \triangleleft z$ und $y \triangleleft z$.

Sei Λ eine gerichtete Menge und U eine beliebige Menge. Dann nennt man eine Abbildung von Λ nach U ein Netz. Man schreibt auch $(u_{\lambda})_{{\lambda} \in \Lambda}$.

(2.2) Definition

Sei $\mathcal A$ eine C^* -Algebra. Dann nennt man ein monoton wachsendes Netz $(u_\lambda)_{\lambda\in\Lambda}$ von positiven Elementen der abgeschlossenen Einheitskugel von $\mathcal A$ approximierende Eins, wenn gilt $a=\lim_{\lambda\to\infty}au_\lambda$ für alle $a\in\mathcal A$.

(2.3) Bemerkung

Aus $a = \lim_{\lambda \to \infty} a u_{\lambda}$ für alle $a \in \mathcal{A}$ folgt $a^* = \lim_{\lambda \to \infty} u_{\lambda} a^*$ für alle $a^* \in \mathcal{A}$. Damit ist die Bedingung in der vorherigen Definition äquivalent zu $a = \lim_{\lambda \to \infty} u_{\lambda} a$ für alle $a \in \mathcal{A}$. \diamond

(2.4) Definition

Man nennt einen Operator $u: X \to Y$ von *endlichem Rang*, falls u(X) endlich dimensional ist und dann setzt man Rang(u) = dim(u(X)). Sei H ein Hilbertraum, dann bezeichnet man mit F(H) die Menge der Operatoren mit endlichem Rang auf H.

(2.5) Lemma

Sei H ein Hilbertraum und K(H) die Menge der kompakten Operatoren auf H. Dann liegt F(H) dicht in K(H).

Beweis

Siehe G.J. Murphy: "C*-Algebras and Operator Theory", Kapitel 2, Theorem 2.4.5.oder H.Führ: Skript zur Funktionalanalysis II Satz 3.15.

(2.6) Lemma

Zu $x,y \in H$, wobei H ein Hilbertraum ist, wird der Operator $x \otimes y$ auf H durch $(x \otimes y)(z) = (z,y)x$ definiert. Der Operator besitzt folgende Eigenschaften:

- 1. $a(x \otimes y) = a(x) \otimes y$ für $a \in B(H)$
- 2. Wenn H ein Hilbertraum ist, dann gibt es für alle $a \in F(H)$ eine Darstellung der Form

$$a = \sum_{k=1}^{m} x_k \otimes y_k,$$

wobei $x_1, x_2 ... x_m, y_1, y_2 ... y_m \in H$.

3.
$$x \otimes y - w \otimes y = (x - w) \otimes y$$

4.
$$||x \otimes y|| = ||x|| \, ||y||$$

Beweis

- 1. $(a(x \otimes y))(z) = a((z,y)x) = (z,y)a(x) = (a(x) \otimes y)(z)$ für $a \in B(H)$
- 2. Vergleiche G.J. Murphy: "C*-Algebras and Operator Theory", Kapitel 2, Theorem 2.4.6.

3.
$$(x \otimes y - w \otimes y)(z) = (z, y)x - (z, y)w = (z, y)(x - w) = ((x - w) \otimes y)(z)$$

4. Mit der Cauchy-Schwarzschen-Ungleichung erhält man

$$\|(x \otimes y)(z)\| = \sup_{\|z\| \le 1} \|(z,y)x\| = \sup_{\|z\| \le 1} |(z,y)| \|x\| \le \sup_{\|z\| \le 1} \|z\| \|y\| \|x\| = \|x\| \|y\|.$$

Andererseits gilt

$$||(x \otimes y)(z)|| = \sup_{\|z\| \le 1} ||(z,y)x|| = \sup_{\|z\| \le 1} |(z,y)| \, ||x|| \ge |(y/\|y\|,y)| \, ||x||$$
$$= (1/\|y\|) \, ||y||^2 \, ||x|| = ||x|| \, ||y||.$$

Damit folgt nun die Behauptung.

(2.7) Beispiel

Sei H ein Hilbertraum mit einer orthonormalen Basis $(e_n)_{n\in\mathbb{N}}$. Aus $dim(H)=\infty$ folgt, dass die Identität auf H nicht kompakt ist, da die Einheitskugel in H in diesem Fall nach Funktionalanalysis I (Bemerkung nach Satz 3.7.7) nicht relativ kompakt ist. Daher besitzt die C *-Algebra K(H) kein Einselement. Sei nun p_n die Projektion auf $\mathbb{C}e_1 + \mathbb{C}e_2 \ldots + \mathbb{C}e_n$. Dann ist die Folge (p_n) eine approximierende Eins in K(H).

Beweis

Die Abbildung p_n liegt offensichtlich in der abgeschlossenen Einheitskugel. Es gilt nach Satz (1.11) $p_n = p_n^* = p_n p_n^* \in K(H)^+$. Damit ist p_n positiv und monoton wachsend. Da F(H) nach (2.5) dicht in K(H) liegt genügt es zu zeigen, dass gilt

$$a = \lim_{n \to \infty} p_n a$$

für alle $a \in F(H)$. Für $a \in F(H)$ gibt es nach (1.7.2.) eine Darstellung

$$a=\sum_{k=1}^m x_k\otimes y_k,$$

wobei $x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_m \in H$. Daher gilt mit (2.6.1). und der Linearität von p_n

$$p_n a = p_n \left(\sum_{k=1}^m x_k \otimes y_k \right) = \sum_{k=1}^m p_n (x_k \otimes y_k) = \sum_{k=1}^m p_n (x_k) \otimes y_k$$

Mit $\lim_{n\to\infty} p_n(x) = x$ erhält man unter Verwendung von (2.6.3.) und (2.6.4.) für alle k

$$\lim_{n \to \infty} \|p_n(x_k) \otimes y_k - x_k \otimes y_k\| = \lim_{n \to \infty} \|(p_n(x_k) - x_k) \otimes y_k\|$$

$$= \lim_{n \to \infty} \|p_n(x_k) - x_k\| \|y_k\| = 0.$$

Zusammenfassend ergibt sich aus den obigen Rechnungen

$$\lim_{n\to\infty} \|p_n a - a\| = \lim_{n\to\infty} \left\| \sum_{k=1}^m (p_n(x_k) \otimes y_k) - \sum_{k=1}^m (x_k \otimes y_k) \right\|$$

$$\leq \lim_{n\to\infty} \sum_{k=1}^m \|p_n(x_k) \otimes y_k - x_k \otimes y_k\| = 0.$$

Damit folgt $a = \lim_{n \to \infty} p_n a$ und somit die Behauptung.

(2.8) Satz

Sei \mathcal{A} eine beliebige C^* -Algebra. Λ bezeichne die Menge aller positiven Elemente a aus \mathcal{A} mit ||a|| < 1. Die Menge Λ ist gerichtet bezüglich der Halbordnung von \mathcal{A}_{sa} .

Beweis

 Λ ist gerichtet:

Behauptung 1: Aus $a, b \in A^+$ mit $a \le b$ folgt $a(1+a)^{-1} \le b(1+b)^{-1}$.

Dazu:

Aus $a \in \mathcal{A}^+$ folgt, dass $\sigma(-a) = -\sigma(a) \subseteq \mathbb{R}_-$ ist und somit ist 1 + a in $\tilde{\mathcal{A}}$ invertierbar. Es gilt:

$$(1+a)(1+a)^{-1} = 1$$

$$\Leftrightarrow (1+a)^{-1} + a(1+a)^{-1} = 1$$

$$\Leftrightarrow a(1+a)^{-1} = 1 - (1+a)^{-1}$$

Sei nun $0 \le a \le b$. Dann folgt mit (1.12.2.) $1 + a \le 1 + b$ und mit (1.12.7.) $(1 + a)^{-1} \ge (1 + b)^{-1}$. Daraus folgt nun mit (1.12.2.) und (1.12.4.) $1 - (1 + a)^{-1} \le 1 - (1 + b)^{-1}$ und dies liefert mit obiger Umformung die Behauptung.

Behauptung 2: Aus $a \in \mathcal{A}^+$ folgt, dass $a(1+a)^{-1}$ in Λ liegt.

Dazu:

Wie in Behauptung 1 lässt sich zeigen, dass 1+a invertierbar ist. Weiterhin ist $a(1+a)^{-1}$ positiv, da aus $0 \le a$ mit Behauptung 1 folgt, dass $0 \le a(1+a)^{-1}$. Es bleibt zu zeigen, dass $\|a(1+a)^{-1}\| < 1$. Dies geschieht mit Hilfe der Gelfand-Transformation. Dazu sei $\mathcal B$ die von 1 und a erzeugte C^* -Unteralgebra von $\mathcal A$. Da $\mathcal B$ kommutativ ist, folgt mit dem Satz von Gelfand-Naimark, dass die Gelfand-Transformation isometrisch ist. Daher gilt

$$\left\| a(1+a)^{-1} \right\| = \left\| \hat{a}(1+\hat{a})^{-1} \right\|_{\infty} = \sup_{w \in \sigma(\mathcal{B})} \left| \hat{a}(w)(1+\hat{a}(w))^{-1} \right| = \sup_{w \in \sigma(\mathcal{B})} \frac{|\hat{a}(w)|}{|(1+\hat{a}(w))|} < 1.$$

Dabei ist $\hat{a}(w) \geq 0$, da nach Vortrag 2 (2.2.c) das Bild von \hat{a} genau $\sigma(a)$ ist und a nach Voraussetzung positiv ist.

Behauptung 3: Für alle $a, b \in \Lambda$ existiert ein $c \in \Lambda$ mit der Eigenschaft $a, b \leq c$ Dazu:

Seien $a,b \in \Lambda$ beliebig. Setze nun $a' = a(1-a)^{-1}$ und $b' = b(1-b)^{-1}$. Weiterhin definiert man $c = (a'+b')(1+a'+b')^{-1}$. a' und b' sind wohldefiniert, da aus $\|a\| < 1$ nach dem Lemma von der Neumannschen Reihe folgt, dass 1-a invertierbar ist. Das gleiche gilt für 1-b. Sei nun $\mathcal B$ die von a und 1 erzeugte C^* -Algebra. Betrachtet man nun die Gelfand-Transformation zu $\mathcal B$ so erhält man $\hat a/(1-\hat a) \ge 0$, da aus a positiv folgt, dass $\hat a \ge 0$ ist. Damit ist auch a' positiv. Analog zeigt man $b' \in \mathcal A^+$. Damit ist a'+b' ebenfalls positiv und somit liegt c nach Behauptung c in c. Es gilt

$$a' = a(1-a)^{-1} \Leftrightarrow a' - a'a = a \Leftrightarrow a' = a(1+a') \Leftrightarrow a'(1+a')^{-1} = a.$$

 \Diamond

Da a' und b' positiv sind, gilt $a' \le a' + b'$. Mit obiger Umformung und Behauptung 1 gilt dann $a = a'(1 + a')^{-1} \le c$. Analog zeigt man $b \le c$ und somit folgt die Behauptung 3 und damit ist Λ aufsteigend gerichtet.

(2.9) Lemma

Eine C^* -Algebra \mathcal{A} wird von Λ linear aufgespannt.

Beweis

Sei $a \in \mathcal{A}$. Dann gibt es eine Darstellung a = b + ic mit $b, c \in \mathcal{A}_{sa}$. Da b und c hermitesch sind, haben sie nach (1.1.2) reelle Spektren. Damit $b, c \in \mathcal{A}^+$ liegen, müssen die Spektren jedoch beide positiv sein. Daher setzt man b' = b - xe beziehungsweise c' = c - ye mit $x = \inf \{\lambda | \lambda \in \sigma(b)\}$ und $y = \inf \{\lambda | \lambda \in \sigma(c)\}$. Dies bewirkt eine Verschiebung des Spektrums, da gilt $\sigma(b - xe) = \{\lambda | (\lambda e - (b - xe)) \text{ist nicht invertierbar}\}$ = $\{\lambda | ((\lambda + x)e - b) \text{ist nicht invertierbar}\}$. Damit erhält man a = b' + xe + ic' + iye. Nach obiger Setzung sind b' und c' positiv. Weiterhin ist entweder -xe oder xe positiv. Das Gleiche gilt für ye und -ye. Damit wurde also eine Darstellung von a durch linear Kombination von positiven Elementen gefunden. Damit diese nun in Δ liegen teilt man sie noch durch das doppelte ihrer Norm und multipliziert diese Zahl als Linearfaktor wieder an das so erhaltene Element von Δ heran.

Zum Beweis des folgenden Satzes benötigen wir ein Analogon zum Satz von Urysohn für lokal kompakte Räume:

(2.10) Lemma

Sei X lokal kompakt, $K \subseteq X$ kompakt und U eine offene Umgebung von K. Dann existiert eine stetige Funktion $f: X \to [0,1]$ mit $f|_{K} \equiv 1$ und $f|_{X \setminus U} \equiv 0$.

Beweis

Siehe A. Krieg: Skript Topologie Kapitel V Satz (3.6)

(2.11) Satz

Jede C^* -Algebra besitzt eine approximierende Eins. Genauer ist $(u_{\lambda})_{\lambda \in \Lambda}$ mit $u_{\lambda} = \lambda$ für alle λ aus Λ eine approximierende Eins. Dabei ist Λ wieder die Menge der positiven Elemente aus \mathcal{A} mit Norm kleiner 1. Man spricht in diesem Fall auch von der kanonischen approximierenden Eins.

Beweis

Da Λ nach Satz (1.8) aufsteigend gerichtet ist, handelt es sich bei $(u_{\lambda})_{\lambda \in \Lambda} = \lambda$ um ein monoton wachsendes Netz in der Einheitskugel von \mathcal{A} . Es bleibt also zu zeigen, dass für alle $a \in \mathcal{A}$ gilt $a = \lim_{\lambda \to \infty} au_{\lambda}$. Da Λ die Menge \mathcal{A} linear aufspannt, genügt es dies für alle a aus Λ zu zeigen.

Sei nun $a \in \Lambda$ beliebig und \mathcal{B} die von a erzeugte C^* -Algebra. Weiterhin sei Γ : $\mathcal{B} \to \mathcal{C}_0(\sigma(\mathcal{B}))$ die Gelfand-Transformation und $f = \Gamma(a)$. Dann ist die Menge $K = \{\omega \in \sigma(\mathcal{B}); |f(\omega)| \geq \epsilon\}$ kompakt, da $f \in \mathcal{C}_0(\sigma\mathcal{B})$.

Das Spektrum $\sigma(\mathcal{B})$ ist nach dem 4. Vortrag ein lokal kompakter Hausdorffraum. Daher gibt es zu jedem ω aus dem Spektrum eine offene Umgebung V_{ω} deren Abschluss W_{ω} kompakt ist. Damit gilt insbesondere

$$K \subseteq \bigcup_{\omega \in K} V_{\omega}$$

Da K kompakt ist, besitzt es eine endliche Teilüberdeckung und man erhält

$$K \subseteq \bigcup_{i=1}^{n} V_{\omega_i} = L \text{ mit } \omega_i \in K$$

Da $\sigma(\mathcal{B})$ lokal kompakt ist, können wir nun Satz (2.11) anwenden. Demnach existiert eine stetige Funktion $g:\sigma(\mathcal{B})\to [0,1]$, sodass $g(\omega)=1$ für alle $\omega\in K$ und $g(\omega)=0$ für alle $\omega\in\sigma(\mathcal{B})\setminus L$.

Wähle nun ein $\delta > 0$ mit $\delta < 1$ und $1 - \delta < \epsilon$. Dann gilt mit dem Satz von Gelfand-Naimark für alle $\omega \in K$:

$$|f(\omega) - \delta g(\omega)f(\omega)| = |f(\omega)(1 - \delta g(\omega))| \le |f(\omega)| |1 - \delta g(\omega)| \le |a| |1 - \delta g(\omega)|$$

$$\le |1 - \delta g(\omega)| \le 1 - \delta < \epsilon$$

Für alle $\omega \in \sigma(\mathcal{B}) \backslash K$:

$$|f(\omega) - \delta g(\omega)f(\omega)| = |f(\omega)(1 - \delta g(\omega))| \le |f(\omega)| |1 - \delta g(\omega)| < \epsilon |1 - \delta g(\omega)| \le \epsilon$$

Damit gilt also $||f - \delta gf|| < \epsilon$ auf dem gesamten Spektrum.

Das oben definierte g liegt in $C_0(\sigma(\mathcal{B}))$, da der Abschluss von L kompakt ist. Daher können wir nun definieren $\lambda_0 = \Gamma^{-1}(\delta g)$. Dann ist $\lambda_0 \in \Lambda$, da Γ isometrisch ist und $\|\delta g\| < 1$ gilt und δg positiv ist. Des Weiteren erhält man

$$||a - u_{\lambda_0}a|| = ||a - \lambda_0 a|| = ||\Gamma(a - \lambda_0 a)|| = ||f - \delta g f|| < \epsilon.$$

Nun sei $\lambda \in \Lambda$ und $\lambda \geq \lambda_0$. Dann folgt $1 - u_{\lambda} \leq 1 - u_{\lambda_0}$ und weiterhin folgt mit (1.12.5) $a(1 - u_{\lambda})a \leq a(1 - u_{\lambda_0})a$. Damit erhält man

$$||a - u_{\lambda}a||^{2} = ||(1 - u_{\lambda})^{1/2}(1 - u_{\lambda})^{1/2}a||^{2} \le ||(1 - u_{\lambda})^{1/2}||^{2} ||(1 - u_{\lambda})^{1/2}a||^{2}$$

$$\le ||(1 - u_{\lambda})^{1/2}a||^{2} = ||a(1 - u_{\lambda})a|| \le ||a(1 - u_{\lambda_{0}})a|| \le ||a|| ||(1 - u_{\lambda_{0}})a||$$

$$\le ||(1 - u_{\lambda_{0}})a|| \le \epsilon$$

Daher gilt $a = \lim_{\lambda \to \infty} u_{\lambda} a$

(2.12) Definition

Ein topologischer Raum heißt *separabel*, wenn es eine abzählbare Teilmenge gibt, die in diesem Raum dicht liegt.

(2.13) Korollar

Ist A eine separable C^* -Algebra, so existiert in A eine approximierende Eins, welche eine Folge ist. \diamond

Beweis

Da \mathcal{A} separabel ist, existiert eine Folge endlicher Mengen $F_1 \subseteq F_2 \subseteq \ldots \subseteq F_n \subseteq \ldots$, sodass $F = \bigcup_{n=1}^{\infty} F_n$ dicht in \mathcal{A} liegt. Sei nun $(u_{\lambda})_{\lambda \in \Lambda}$ eine beliebiges approximierende Eins aus \mathcal{A} . Sei $\varepsilon > 0$ und wir setzen $F_n = \{a_1, a_2, \ldots a_m\}$. Dann existieren $\lambda_1, \lambda_2, \ldots \lambda_m \in \Lambda$ mit $\|a_j - a_j u_{\lambda}\| < \varepsilon$ falls $\lambda \geq \lambda_j$. Nun wählt man λ_{ε} mit $\lambda_{\varepsilon} \geq \lambda_1, \ldots \lambda_m$. Dann gilt $\|a - au_{\lambda}\| < \varepsilon$ für alle $a \in F_n$ und alle $\lambda \geq \lambda_{\varepsilon}$. Setzt man nun $\varepsilon = 1/n$ mit $n \in \mathbb{N}$, dann existiert ein $\lambda_n = \lambda_{\varepsilon} \in \Lambda$ sodass $\|a - a\lambda_n\| < 1/n$ für alle $a \in F_n$. Da Λ aufsteigend geordnet ist, können wir λ_n so wählen, dass $\lambda_n \leq \lambda_{n+1}$ für alle n gilt. Daraus folgt nun $\lim_{n \to \infty} \|a - au_{\lambda_n}\| = 0$ für alle $n \in F$. Da $n \in F$ dicht in $n \in F$ liegt gilt dies also auch für alle $n \in F$. Daher ist $n \in F$ eine approximierende Eins in $n \in F$.

§3 Ideale in C*-Algebren

(3.1) Bemerkung

Ist I ein abgeschlossenes Ideal in einer C^* -Algebra \mathcal{A} , so ist I eine C^* -Unteralgebra, da I per Definition eine Unteralgebra ist, als abgeschlossene Teilmenge einer vollständigen Menge wieder vollständig ist und die Normgleichung für alle $a \in I$ erfüllt ist. Für den letzten Punkt benötigt man noch die Selbstadjungiertheit des Ideals. Wir werden sehen, dass dies für abgeschlossene Ideale erfüllt ist.

(3.2) Satz

Sei \mathcal{L} ein abgeschlossenes Linksideal in einer C^* -Algebra \mathcal{A} . Dann existiert ein monoton wachsendes Netz $(u_{\lambda})_{{\lambda}\in\Lambda}$ von positiven Elementen der abgeschlossenen Einheitskugelvon \mathcal{L} , sodass $a=\lim_{{\lambda}\to\infty}au_{\lambda}$ für alle $a\in\mathcal{L}$.

Beweis

Dieser Beweis wird in $\tilde{\mathcal{A}}$ geführt. Sei $\mathcal{B} = \mathcal{L} \cap \mathcal{L}^*$. Dann ist \mathcal{B} eine C^* -Algebra. Nach Satz (2.11) gibt es daher in \mathcal{B} eine approximierende Eins $(u_{\lambda})_{\lambda \in \Lambda}$. Falls $a \in \mathcal{L}$, so folgt

 $a^*a \in \mathcal{B}$. Daher gilt $\lim_{\lambda \to \infty} a^*a(1-u_{\lambda}) = 0$. Nun erhält man, da \mathcal{A} eine C^* -Algebra ist

$$\lim_{\lambda \to \infty} \|a - au_{\lambda}\|^{2} = \lim_{\lambda \to \infty} \|(1 - u_{\lambda})a^{*}a(1 - u_{\lambda})\| \le \lim_{\lambda \to \infty} \|(1 - u_{\lambda})\| \|a^{*}a(1 - u_{\lambda})\| = 0$$

Dabei wurde im letzten Schritt verwendet, dass $\|1 - u_{\lambda}\| \le 1$ gilt, was wiederum aus der Betrachtung der von u_{λ} und 1 erzeugten C^* -Algebra und der zugehörigen Gelfandtransformation folgt. Nun erhält man $\lim_{\lambda \to \infty} \|a - au_{\lambda}\| = 0$ und somit folgt die Behauptung.

(3.3) Satz

Sei I ein abgeschlossenes Ideal in einer C^* -Algebra \mathcal{A} . Dann ist I selbstadjungiert und eine C^* -Unteralgebra von \mathcal{A} . Sei $(u_{\lambda})_{{\lambda}\in\Lambda}$ eine approximierende Eins in I. Dann gilt für alle $a\in\mathcal{A}$

$$||a+I|| = \lim_{\lambda \to \infty} ||a-u_{\lambda}a|| = \lim_{\lambda \to \infty} ||a-au_{\lambda}||$$

Beweis

Nach Satz (3.2) existiert ein monoton wachsendes Netz $(u_{\lambda})_{\lambda \in \Lambda}$ von positiven Elementen der abgeschlossenen Einheitskugel von I, sodass $a = \lim_{\lambda \to \infty} a u_{\lambda}$ für alle $a \in I$. Damit gilt auch $a^* = \lim_{\lambda \to \infty} u_{\lambda} a^*$. Da die u_{λ} alle im abgeschlossenen Ideal I liegen, folgt dass $a^* \in I$. Damit ist I selbstadjungiert.

Sei $(u_{\lambda})_{\lambda \in \Lambda}$ eine beliebige approximierende Eins in I. Weiterhin sei $a \in \mathcal{A}$ und $\epsilon > 0$. Nun existiert ein $b \in I$, sodass $||a + b|| < ||a + I|| + \epsilon/2$. Aus $b = \lim_{\lambda \to \infty} u_{\lambda} b$ folgt, dass ein $\lambda_0 \in \Lambda$ existiert mit $||b - u_{\lambda}b|| < \epsilon/2$ für alle $\lambda \geq \lambda_0$. Damit erhält man

$$||a - u_{\lambda}a|| = ||(1 - u_{\lambda})a + (b - u_{\lambda}b) - (b - u_{\lambda}b)|| \le ||(1 - u_{\lambda})(a + b)|| + ||b - u_{\lambda}b||$$

$$\le ||a + b|| + ||b - u_{\lambda}b|| < ||a + I|| + \epsilon/2 + \epsilon/2.$$

Daraus folgt nun $||a+I|| = \lim_{\lambda \to \infty} ||a-u_{\lambda}a||$. Weiterhin gilt $||a+I|| = ||a^*+I|| = \lim_{\lambda \to \infty} ||a^*-u_{\lambda}a^*|| = \lim_{\lambda \to \infty} ||a-au_{\lambda}||$.

(3.4) Korollar

Sei I ein abgeschlossenes Ideal in einer C^* -Algebra \mathcal{A} und J sei ein abgeschlossenes Ideal in I. Dann ist J auch ein Ideal in \mathcal{A} .

Beweis

Da J wieder eine C^* -Algebra ist, wird J nach Lemma (1.5.3.) von J^+ linear aufgespannt. Daher genügt es zu zeigen, dass ab und ba für alle $a \in A$ und $b \in J^+$ wieder in J liegen. Nach Satz (3.2) gibt es in I eine approximierende Eins $(u_{\lambda})_{{\lambda} \in \Lambda}$. Aus

 $b \in J^+$ folgt mit Satz (1.4), dass auch $b^{1/2} \in J^+$ und damit auch $b^{1/2} \in I$. Daher gilt nun $b^{1/2} = \lim_{\lambda \to \infty} u_{\lambda} b^{1/2}$. Multipliziert man von links mit a und von rechts mit $b^{1/2}$, so ergibt sich $ab = \lim_{\lambda \to \infty} au_{\lambda} b^{1/2} b^{1/2}$. Da $au_{\lambda} b^{1/2} \in I$ und $b^{1/2} \in J$ folgt aus der vorherigen Gleichung $ab \in J$, da J ein Ideal in I ist. Genauso zeigt man, dass $a^*b \in J$. Nach Satz (3.3) ist J selbstadjungiert und daher gilt, da b hermitesch ist $(a^*b)^* = b^*a = ba \in J$ für alle $a \in \mathcal{A}$ und $b \in J^+$.

Ein Teil des folgenden Satzes wurde schon im 2.Vortrag im Beweis zu (1.7) nachgewiesen. Dazu benötigen wir jedoch folgende Hilfsaussage:

(3.5) Lemma

Sei \mathcal{A} eine Banachalgebra mit einer Involution, sodass gilt $||a||^2 \leq ||a^*a||$ für alle $a \in \mathcal{A}$. Dann ist \mathcal{A} eine C^* -Algebra.

Beweis

Aus der Ungleichung $||a||^2 \le ||a^*a|| \le ||a^*|| \, ||a||$ folgt, dass $||a|| \le ||a^*||$ für alle $a \in \mathcal{A}$. Analog zeigt man $||a^*|| \le ||a||$ für alle $a \in \mathcal{A}$. Daher muss gelten $||a|| = ||a^*||$ und somit erhält man $||a||^2 = ||a^*a||$, woraus folgt, dass \mathcal{A} eine C^* -Algebra ist.

(3.6) Satz

Sei I ein abgeschlossenes Ideal in einer C^* -Algebra \mathcal{A} . Dann ist der Quotient A/I eine C^* -Algebra mit den normalen Operationen und der Quotientennorm. \diamond

Beweis

Dass \mathcal{A}/I mit der Quotientennorm eine Banachalgebra bildet, wurde bereits im Beweis von Satz (1.7) in Vortrag 2 gezeigt. Da I nach Satz (3.3) selbstadjungiert ist,handelt es sich bei \mathcal{A}/I um eine *-Algebra bezüglich der Involution auf \mathcal{A} . Wir weisen nun nach, dass es sich dabei sogar um eine C^* -Algebra handelt. Sei $(u_\lambda)_{\lambda\in\Lambda}$ eine approximatierende Eins in I. Für alle $a\in\mathcal{A}$ und $b\in I$ gilt dann mit Satz (3.3)

$$\begin{aligned} \|a + I\|^2 &= \lim_{\lambda \to \infty} \|a - au_{\lambda}\|^2 = \lim_{\lambda \to \infty} \|(1 - u_{\lambda})a^*a(1 - u_{\lambda})\| \\ &= \lim_{\lambda \to \infty} \|(1 - u_{\lambda})(a^*a + b)(1 - u_{\lambda}) - (1 - u_{\lambda})b(1 - u_{\lambda})\| \\ &\leq \lim_{\lambda \to \infty} \|(1 - u_{\lambda})(a^*a + b)(1 - u_{\lambda})\| + \lim_{\lambda \to \infty} \|(1 - u_{\lambda})b(1 - u_{\lambda})\| \\ &\leq \sup_{\lambda \in \Lambda} \|(1 - u_{\lambda})(a^*a + b)(1 - u_{\lambda})\| + \lim_{\lambda \to \infty} \|(1 - u_{\lambda})b(1 - u_{\lambda})\| \\ &\leq \|a^*a + b\| + \lim_{\lambda \to \infty} \|b - u_{\lambda}b\| = \|a^*a + b\| \end{aligned}$$

Es wurde wieder die Abschätzung $||1 - u_{\lambda}|| \le 1$ verwendet. Daher gilt nun $||a + I||^2 \le ||a^*a + I||$ und somit ist \mathcal{A}/I eine C^* -Algebra nach Lemma (3.5).

§4 *-Homomorphismen

(4.1) Satz

Seien \mathcal{A} und \mathcal{B} C^* -Algebren und $\phi: \mathcal{A} \to \mathcal{B}$ ein injektiver *-Homomorphismus. Dann ist ϕ isometrisch.

Beweis

Siehe 3. Vortrag Korollar (4.7)

(4.2) Satz

Seien \mathcal{A} und \mathcal{B} C^* -Algebren und $\phi : \mathcal{A} \to \mathcal{B}$ ein *-Homomorphismus. Dann ist $\phi(A)$ eine C^* -Unteralgebra von \mathcal{B} .

Beweis

 $Bild(\phi)$ erbt eine Algebrastruktur von \mathcal{B} . Daher genügt es zu zeigen, dass $Bild(\phi)$ abgeschlossen und vollständig ist. Die Abbildung

$$\mathcal{A}/Kern(\phi) \rightarrow \mathcal{B}, a + Kern(\phi) \mapsto \phi(a)$$

ist ein injektiver *-Homomorphismus zwischen zwei C^* -Algebren, da $\mathcal{A}/Kern(\phi)$ nach Satz (3.6) wieder eine C^* -Algebra ist. Damit ist ϕ nach Satz (4.1) isometrisch. Daher ist $Bild(\phi)$ vollständig und daher abgeschlossen in \mathcal{B} .

(4.3) Satz

Sei \mathcal{B} eine C^* -Unteralgebra von \mathcal{A} und I ein abgeschlossenes Ideal in \mathcal{A} . Dann ist $\mathcal{B} + I$ eine C^* -Unteralgebra von \mathcal{A}

Beweis

 $\mathcal{B}+I$ besitzt als Teilmenge von \mathcal{A} eine Algebrastruktur. Wir zeigen wieder, dass $\mathcal{B}+I$ abgeschlossen und vollständig ist. Dazu weisen wir nach, dass der Quotient $(\mathcal{B}+I)/I$ vollständig ist. $\mathcal{B}\cap I$ ist ein abgeschlossenes Ideal in \mathcal{B} , woraus folgt, dass $\mathcal{B}/(\mathcal{B}\cap I)$ eine C^* -Algebra ist. Die Abbildung:

$$\phi: \mathcal{B}/(\mathcal{B}\cap I) \to \mathcal{A}/I, \ \phi(b+\mathcal{B}\cap I) = b+I$$

mit $b \in \mathcal{B}$ ist also ein *-Homomorphismus zwischen zwei C^* -Algebren mit Bild $(\mathcal{B}+I)/I$. Nach Satz (4.2) ist $(\mathcal{B}+I)/I$ somit eine C^* -Algebra und damit vollständig. Nun wollen wir mit Hilfe von Vortrag 2 Lemma (1.6) zeigen, dass daraus folgt, dass $\mathcal{B}+I$ vollständig ist.

 \Diamond

Sei dazu x_n eine beliebige Folge in $\mathcal{B}+I$ mit $\sum_{n=1}^{\infty}\|x_n\|<\infty$. Es genügt nun zu zeigen, dass ein $x\in\mathcal{B}+I$ existiert, mit $\lim_{N\to\infty}\left\|x-\sum_{n=1}^{N}x_n\right\|=0$. Es gilt

$$\sum_{n=1}^{\infty} ||x_n + I|| \le \sum_{n=1}^{\infty} ||x_n|| < \infty$$

da auf Grund der Definition der Quotientennorm stets $\|x+I\| \leq \|x\|$ gilt. Weiterhin darf ohne Einschränkung annehmen, dass $\|x_K\| \leq \|x_K+I\| + 2^{-K}$ gilt. Da $(\mathcal{B}+I)/I$ vollständig ist, existiert nach Vortrag 2 Lemma (1.6) ein $x+I \in (\mathcal{B}+I)/I$ mit $\lim_{N\to\infty} \left\|x+I-\sum_{n=1}^N (x_n+I)\right\| = 0$. Dann gilt ebenfalls

$$\left\| x - \sum_{n=1}^{N} x_n \right\| \le \left\| (x - \sum_{n=1}^{N} x_n) + I \right\| + 2^{-K} = \left\| x + I - \sum_{n=1}^{N} (x_n + I) \right\| + 2^{-K} \xrightarrow{K \to \infty} 0$$

Damit ist nach Vortrag 2 Lemma (1.6) $\mathcal{B} + I$ vollständig.

(4.4) Definition

Sei I ein abgeschlossenes Ideal in einer C^* -Algebra $\mathcal A$. Man sagt, dass I wesentlich in $\mathcal A$ ist, falls aus aI=0 folgt a=0 für alle $a\in\mathcal A$. Ein doppelter Zentralisator zu einer C^* -Algebra $\mathcal A$, ist ein Paar (L,R) von beschränkten linearen Operatoren auf $\mathcal A$, sodass für alle $a,b\in\mathcal A$ gilt

$$L(ab) = L(a)b$$
, $R(ab) = aR(b)$ und $R(a)b = aL(b)$.

Die Menge aller doppelten Zentralisatoren von \mathcal{A} bezeichnet man $M(\mathcal{A})$.

(4.5) Satz

Wenn A eine C^* -Algebra ist, so ist M(A) ebenfalls eine C^* -Algebra mit folgenden Operationen:

Multiplikation: $(L_1, R_1)(L_2, R_2) = (L_1L_2, R_2R_1)$

Addition: $(L_1, R_1) + (L_2, R_2) = (L_1 + L_2, R_1 + R_2)$

Skalarmultiplikation: $\alpha(L, R) = (\alpha L, \alpha R)$

Involution: $(L, R) \mapsto (L, R)^* = (R^*, L^*) \text{ mit } L^*(a) = (L(a^*))^* \text{ und } R^*(a) = (R(a^*))^*$

Norm: ||(L, R)|| = ||L|| = ||R||.

Man nennt M(A) Multiplikatoralgebra von A.

Beweis

Siehe G.J. Murphy: "C*-Algebras and Operator Theory", Kapitel 2, Seite 38 und 39□

(4.6) Korollar

1. Sei $a \in A$. Definiert man $L_a(b) = ab$ und $R_a(b) = ba$, so gilt $(L_a, R_b) \in M(A)$.

- 2. Jede C^* -Algebra I ist ein Ideal in M(I).
- 3. Jede C^* -Algebra I ist wesentlich in ihrer Multiplikatoralgebra M(I).

Beweis

- 1. Siehe G.J. Murphy: "C*-Algebras and Operator Theory", Kapitel 2, Seite 38
- 2. Hierbei wird $a \in I$ mit (L_a, R_a) identifiziert.
- 3. Diese Aussage folgt sofort aus 2. und der Definition von wesentlich. \Box

Der folgende Satz besagt, dass die Mulitiplikatoralgebra M(I) von I die größte C^* -Algebra mit Eins ist, die I als wesentliches abgeschlossenes Ideal enthält.

(4.7) Satz

Sei I ein abgeschlossenes Ideal in einer C^* -Algebra \mathcal{A} . Dann existiert ein eindeutig bestimmter *-Homomorphismus $\phi: \mathcal{A} \to M(I)$, der die Inklusion $I \to M(I)$ fortsetzt. Weiterhin ist ϕ injektiv, falls I wesentlich in \mathcal{A} ist. \diamond

Beweis

Existenz: Betrachte $\phi: \mathcal{A} \to M(I)$, $a \mapsto (L_a, R_a)$. Die Abbildung ist wohldefiniert, da $L_a(c) = ac \in I$ für alle $c \in I$ gilt. Analoges gilt für R_a . Hierbei handelt es sich um einen *-Homomorphismus, da gilt

$$\phi(a+b) = (L_{a+b}, R_{a+b}) = ((L_a + L_b, R_a + R_b) = (L_a, R_a) + (L_b, R_b) = \phi(a) + \phi(b)$$

$$\phi(\alpha a) = (L_{\alpha a}, R_{\alpha a}) = \alpha(L_a, R_a) = \alpha \phi(a)$$

$$\phi(ab) = (L_{ab}, R_{ab}) = (L_a L_b, R_b R_a) = (L_a, R_a)(L_b, R_b) = \phi(a)\phi(b)$$

$$\phi(a^*) = (L_{a^*}, R_{a^*}) = (R_a^*, L_a^*) = (L_a, R_a)^* = (\phi(a))^*.$$

Die Beschränktheit von ϕ folgt aus der Beschränktheit von L_a und R_a für alle $a \in \mathcal{A}$. Eindeutigkeit: Angenommen es existiert noch ein weiterer solcher *-Homomorphismus $\overline{\psi : \mathcal{A} \to M(I)}$. Sei nun $a \in \mathcal{A}$ und $b \in I$, dann gilt

$$\phi(a)b = \phi(ab) = ab = \psi(ab) = \psi(a)b.$$

Daher gilt $(\phi(a) - \psi(a))I = 0$, woraus folgt $\psi(a) = \phi(a)$, da I wesentlich in M(I) liegt. Damit ist der *-Homomorphismus eindeutig bestimmt. Injektivität: Sei I wesentlich in \mathcal{A} und $a \in Kern(\phi)$. Dann gilt $aI = L_a(I) = 0$. Da I wesentlich in \mathcal{A} ist, folgt a = 0. Damit ist ϕ injektiv.