Algebraische Gruppen, Übungsblatt 9

Abgabe bis Dienstag, den 26.4.2011, 10:00 Uhr

Es sei stets *K* ein algebraisch abgeschlossener Körper.

Aufgabe 30 (5 Punkte)

- (1) Es sei $\mathcal{X} = \mathbb{A}^2$, $Y = \mathbb{A}^2$ und $\phi \colon \mathcal{X} \to \mathcal{Y}$ gegeben duch $\phi(x,y) = (x,xy)$. Vergleiche Aufgabe 29 (2).
- (2) Es sei $\mathcal{X} = \mathbb{V}(T_1 T_2^2) \subset \mathbb{A}^2$, $\mathcal{Y} = \mathbb{A}^1$ und $\phi \colon \mathcal{X} \to \mathcal{Y}$ gegeben duch $\phi(x,y) = x$. Vergleiche Aufgabe 27 (1).

Bestimmen Sie für jedes $y \in \mathcal{Y}$ die Faser $\phi^{-1}(y)$. Bestimmen Sie weiters die Dimension und die Mächtigkeit jeder Faser. Finden Sie eine offene Menge $U \subset \mathcal{X}$ wie in Proposition 7.

Aufgabe 31 (5 Punkte)

- (1) Es seien $\phi \colon \mathcal{X} \to \mathcal{Y}$ and $\psi \colon \mathcal{Y} \to \mathcal{Z}$ Morphismen von Varietäten und $x \in X$ so dass ϕ lokal endlich in x ist und ψ lokal endlich in $\phi(x)$ ist. Zeigen Sie dass $\psi \circ \phi$ lokal endlich in x ist.
- (2) Finden Sie ein Beispiel für einen Morphismus $\phi \colon \mathcal{X} \to \mathcal{Y}$ von affinen Varietäten so dass ϕ lokal endlich in x ist für alle $x \in \mathcal{X}$ aber $K[\mathcal{X}]$ nicht endlich erzeugt ist als K[Y]-Modul.

Zusatzaufgabe (5 Punkte)

Es sei $\phi \colon \mathcal{X} \to \mathcal{Y}$ ein surjectiver Morphismus affiner irreduzibler Varietäten so dass ϕ lokal endlich ist in x für alle $x \in \mathcal{X}$. Zeigen Sie: $K[\mathcal{X}]$ ist endlich erzeugt als K[Y]-Modul.

Hinweis: In Aufgabe 31 (1) und der Zusatzaufgabe dürfen Sie folgendes Resultat verwenden: Es sei $\phi \colon \mathcal{X} \to \mathcal{Y}$ ein Morphismus affiner Varietäten so dass $K[\mathcal{X}]$ endlich erzeugt ist als $k[\mathcal{Y}]$ -Modul. Dann ist für jede offene affine Teilmenge U von \mathcal{Y} auch $V = \phi^{-1}(U)$ affin und K[V] ist ein endlich erzeugter K[U]-Modul.