Lie-Gruppen I, Übungsblatt 10

Wird besprochen am Mittwoch, den 30. November 2011, 9:55 Uhr

Aufgabe 41 Es seien $A \subset SL(2, \mathbb{R})$ die Untergruppe der Diagonalmatrizen in $SL(2, \mathbb{R})$ mit positiven Einträgen, und N die Untergruppe der oberen Dreiecksmatrizen mit Einsen auf der Diagonalen. Dann ist AN die Untergruppe aller oberen Dreiecksmatrizen mit positiven Diagonaleinträgen. Zeigen Sie:

- (a) Die Abbildung $SO(2) \times A \times N \ni (k, a, n) \mapsto kan \in SL(2, \mathbf{R})$ ist ein Diffeomorphismus. Folgern Sie: $SL(2, \mathbf{R})$ ist zusammenhängend, und $GL(2, \mathbf{R})$ hat zwei Zusammenhangskomponenten.
- (b) Zeigen Sie: Dann hat ad(X) Rang zwei für alle $X \in sl(2, \mathbb{R}) \setminus \{0\}$.
- (c) Es seien $X, Y \in sl(2, \mathbf{R})$ mit [X, Y] = X. Zeigen Sie: Dann ist X nicht invertierbar. (*Hinweis*: Führen Sie einen Widerspruchsbeweis und betrachten Sie Spur $(XYX^{-1} Y)$.)

Bemerkung: Die Faktorisierung g = kan nennt man Iwasawa-Zerlegung von $g \in SL(2, \mathbb{R})$.

Aufgabe 42 Es sei M eine Mannigfaltigkeit, auf der die Lie-Gruppe G glatt operiert. Auf dem Bahnenraum $M/G = \{G \cdot x : x \in M\}$ betrachten wir die Quotiententopologie: Es ist $U \subset M/G$ offen genau dann, wenn $\{x \in M : G \cdot x \in U\} \subset M$ offen ist.

- (a) Es sei G kompakt. Zeigen Sie: Die Quotiententopologie auf M/G ist Hausdorffsch.
- (b) Geben Sie ein Beispiel einer glatten, nichttransitiven Operation einer Lie-Gruppe *G* auf einer Mannigfaltigkeit *M* an, bei der jeder Orbit dicht ist. Geben Sie die Quotiententopologie hier explizit an. (Hinweis zur Konstruktion: Sie können *M* als Lie-Gruppe wählen, und dazu eine geeignete Lie-Untergruppe *G*.)

Aufgabe 43 Es sei G eine zusammenhängende Lie-Gruppe mit Lie-Algebra $\mathfrak g$ und (φ,H) eine zusammenhängende Lie-Untergruppe. Dann ist $\varphi(H)$ eine normale Untergruppe von G genau dann, wenn die Lie-Algebra $d\varphi|_{e}(\mathfrak h)$ von H ein Ideal in $\mathfrak g$.