Modulformen zu Kongruenzuntergruppen

Seminar zur Funktionentheorie 2

05.10.2012

Michael Amend

Inhaltsverzeichnis

1	Modulformen zu einer Kongruenzgruppe	2
2	Die Fourier-Entwicklung	7
3	Der Übergang zur vollen Modulgruppe	8
4	Negatives Gewicht und ganze Modulfunktionen	9
5	Positives Gewicht	10
6	Spitzenformen	12
Li	teraturverzeichnis	16

Der erste Teil des Vortrags wiederholt zunächst nochmal die wichtigsten Grundlagen aus der Funktionentheorie 2 und verwendet dabei die Bezeichnungen aus [Kri12]. Das Ziel dabei ist, erste Aussagen über ganze Modulformen zu Kongruenzgruppen herzuleiten mit dem Wissen über die volle Modulgruppe Γ und anschließend eine Dimensionsabschätzung anzugeben. Im weiteren Verlauf wird dann noch die Gruppe der Spitzenformen, eine Untergruppe der Menge der ganzen Modulformen näher betrachtet.

§1 Modulformen zu einer Kongruenzgruppe

Zunächst erinnern wir an einige Grundlagen:

(1.1) Definition (Modulgruppe Γ)

Die volle Modulgruppe ist definiert durch

$$\Gamma = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\} = \operatorname{SL}(2, \mathbb{Z})$$

(1.2) Definition (Hauptkongruenzgruppe)

Für ein $n \in \mathbb{Z}$ ist

$$\Gamma[n] := \{ M \in \Gamma | M \equiv E(mod \ n) \}$$

die Hauptkongruenzgruppe (mod n).

(1.3) Definition (Kongruenzgruppe)

Wenn es zu einer Untergruppe

$$\Lambda \subset \Gamma$$

ein $n \in \mathbb{N}$ gibt, sodass

$$\Gamma[n] \subset \Lambda$$
,

heißt Λ Kongruenzgruppe.

Alle Kongruenzgruppen haben endlichen Index in Γ , da alle $\Gamma[n]$ endlichen Index in Γ haben. (vgl. [KK07] Korollar II.3.2).

(1.4) Definition (Abelscher Charakter von Λ)

Ein Gruppenhomomorphismus

$$\chi: \Lambda \to \{z \in \mathbb{C} | |z| = 1\}$$

heißt abelscher Charakter von Λ .

Dabei heißt

$$\chi(M) = 1 \ \forall \ M \in \Lambda$$

trivialer Charakter und wird mit 1 bezeichnet.

Ein abelscher Charakter wird als *endlich* bezeichnet, wenn es ein $m \in \mathbb{N}$ gibt mit $\chi^m \equiv 1$.

Wenn $\Gamma[n] \subset \Lambda$ und $\chi(M) = 1$ für alle $M \in \Gamma[n]$ gilt, sagt man, dass χ ein Charakter $mod\ n$ von Λ ist.

Wir betrachten zwei Beispiele für endliche abelsche Charaktere.

(1.5) Beispiel

Mit der Bezeichnung $\Gamma_0[p] = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma | c \equiv 0 \pmod{p} \}$ und $\Lambda = \Gamma_0[p], p \in \mathbb{P}_{>2}$ Primzahl ist das Legendre-Symbol ein abelscher Charakter:

$$\chi(M) = \left(\frac{d}{p}\right) = \begin{cases} 1, & \text{wenn } d \text{ quadratischer Rest modulo } p \text{ ist.} \\ -1, & \text{wenn } d \text{ quadratischer Nichtrest modulo } p \text{ ist.} \\ 0, & \text{wenn } d \text{ Vielfaches von } p \text{ ist.} \end{cases}$$

Für $M, L \in \Gamma_0[p]$ gilt

$$\chi(M \cdot L) = \chi(\begin{pmatrix} * & * \\ * & cb' + dd' \end{pmatrix}) = \left(\frac{c \cdot b' + d \cdot d'}{p}\right) \stackrel{p|cb'}{=} \left(\frac{d \cdot d'}{p}\right) \stackrel{multiplikativ}{=} \left(\frac{d}{p}\right) \cdot \left(\frac{d'}{p}\right)$$
$$= \chi(M) \cdot \chi(L)$$

und es ist $\chi(E)=1$, also ist χ ein Gruppenhomomorphismus und mit $\chi^2=1$ (der Fall $\chi(M)=0$ kommt nicht vor) ist χ ein endlicher abelscher Charakter.

Das folgende Beispiel ist insofern bedeutsam, da wir im späterem Verlauf noch einmal darauf zurückkommen werden.

(1.6) Beispiel

$$\begin{split} \Lambda &= \Gamma_{\vartheta} := < J, T^2 > = < \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} >, \\ \chi_{\vartheta}(M) &= \begin{cases} 1, & \text{falls } M \in \Gamma[2], \\ -1, & \text{falls } M \notin \Gamma[2]. \end{cases} \end{split}$$

Dabei wird $\Gamma[2]$ von -E, T^2 und JT^2J^{-1} erzeugt und es ist $\Gamma_{\theta} = \Gamma[2] \cup \Gamma[2] \cdot J$ (vgl. [KK07] II.3.4)), also $\chi_{\theta}(\Gamma[2]) = \{1\}$ und $\chi_{\theta}(\Gamma[2] \cdot J) = \{-1\}$. Betrachte also die Homomorphismen

$$\chi'_{\vartheta}:\Gamma_{\vartheta}\to\Gamma_{\vartheta}/\Gamma[2],M\mapsto\overline{M} ext{ mit } \chi'_{\vartheta}(\Gamma_{\vartheta})=\{\overline{E},\overline{J}\}$$

$$\chi''_{\vartheta}: \Gamma_{\vartheta}/\Gamma[2] = \{\overline{E}, \overline{J}\} \to \{\pm 1\}, \chi''_{\vartheta}(M) = \begin{cases} 1, & \text{wenn } M = \overline{E} \\ -1, & \text{wenn } M = \overline{J} \end{cases}.$$

Dann ist $\chi''_{\vartheta} \circ \chi'_{\vartheta} = \chi_{\vartheta}$ ein Homomorphismus mit $\chi^2_{\vartheta} = 1$, also ist χ_{ϑ} ein endlicher abelscher Charakter.

Für den Beweis des nächsten Lemmas benötigen wir noch eine Aussage über die Hauptkongruenzgruppe $\Gamma[n]$:

(1.7) Bemerkung

 $\Gamma[n]$ ist Normalteiler mit endlichem Index in Γ , d.h. $M^{-1}\Gamma[n]M = \Gamma[n]$.

Beweis

Als Kern des Homomorphismus $\Phi: \Gamma \to SL(2; \mathbb{Z}/n\mathbb{Z}), M \mapsto \overline{M}$ ist $\Gamma[n]$ Normalteiler mit endlichem Index in Γ . (vgl. [Kri12] XI.3.3, [KK07] Satz II.3.2)

Damit kommen wir nun zum

(1.8) Lemma

Wenn Λ eine Kongruenzgruppe ist, so ist jeder abelsche Charakter $mod\ n$ von Λ ein endlicher Charakter.

Beweis

Zunächst verwenden wir *den kleinen Satz von Fermat*, nach dem für eine Gruppe G gilt, dass $g^{|G|} = e$ für alle $g \in G$.

Desweiteren ist nach Bemerkung(1.7) $\Gamma[n]$ ein Normalteiler mit endlichem Index in Γ , also ist auch der Index in Λ endlich. Es ist also auch $\Lambda/\Gamma[n]$ eine endliche Gruppe der Ordnung m bei geeigneter Wahl von m.

Mit dem kleinem Satz von Fermat gilt also $L^m\Gamma[n]=(L\Gamma[n])^m=\Gamma[n]$ für alle $L\in\Lambda$, wobei $\Gamma[n]$ das neutrale Element in $\Lambda/\Gamma[n]$ ist. Also ist $L^m\in\Gamma[n]$ und da χ als abelscher Charakter (mod n) ein Gruppenhomomorphismus ist, gilt $\chi(L)^m=\chi(L^m)=1$.

(1.9) Definition

Im folgendem seien nun Λ eine Kongruenzgruppe, χ ein abelscher Charakter von Λ und $k \in \mathbb{Z}$. Wenn für eine Funktion $f : \mathbb{H} \to \mathbb{C}$ gilt, dass

- (MK.1) f holomorph auf \mathbb{H} ist und
- (MK.2) $f|_k L = \chi(L) \cdot f$ für alle $L \in \Lambda$, mit $f|_k L(\tau) = (c + d\tau)^{-k} f(L\tau)$ gilt und
- (MK.3) $f|_k M$ für alle $M \in \Gamma$ bei ∞ holomorph ist, also für alle $\beta > 0$ ist $|f|_k M(z)|$, $\mathrm{Im}(z) > \beta$ beschränkt

so heißt diese Funktion f ganze Modulform vom Gewicht k zur Kongruenzgruppe Λ und zum Charakter χ (vgl. [Kri12] XII.7) und [KK07]. II.1.4)

Die Menge aller ganzen Modulformen vom Gewicht k zu Λ und χ ist ein Vektorraum über $\mathbb C$ und wird mit $\mathbb M_k(\Lambda,\chi)$ bezeichnet.

Für den trivialen Charakter schreibt man auch $\mathbb{M}_k(\Lambda) := \mathbb{M}_k(\Lambda, 1)$.

Direkt aus der Definition erhält man somit

$$\mathbb{M}_k = \mathbb{M}_k(\Gamma)$$
.

Betrachten wir zunächst ein Beispiel einer ganzen Modulform vom Gewicht 2 zur Kongruenzgruppe Γ_{θ} und zum Charakter χ_{θ} (vgl. Beispiel(1.6)).

(1.10) Beispiel

Mit
$$\vartheta(\tau) = \sum_{n \in \mathbb{Z}} e^{\pi i n^2 \tau}$$
, $\tau \in \mathbb{H}$ ist

$$\vartheta^4 \in \mathbb{M}_2(\Gamma_{\vartheta}, \chi_{\vartheta})$$
.

da gilt:

Die Theta-Reihe ϑ ist holomoph auf $\mathbb H$ und ∞ , da $|\sum_{n\in\mathbb Z}e^{\pi in^2\tau}|$ beschränkt für $\mathrm{Im}(\tau)>\beta$ für alle

 $\beta > 0$. Damit ist auch ϑ^4 holomorph auf $\mathbb H$ und ∞ . Mit der Theta-Transformationsformel (vgl. [Kri10] VI.5.4) folgt für die Erzeuger J, T^2 von Γ_{ϑ} :

$$\begin{split} \vartheta^4|_2J(\tau) \stackrel{Def.}{=} \tau^{-2} \cdot \vartheta^4(\frac{-1}{\tau}) \stackrel{Theta-Trans.}{=} -1 \cdot \vartheta^4(\tau) = \chi_{\vartheta}(J) \cdot \vartheta^4(\tau) \\ \vartheta^4|_2T^2(\tau) = \vartheta^4(T^2\tau) = \vartheta^4(\tau+2) \stackrel{\text{Fourier-Entw.}}{=} \vartheta^4(\tau) = \chi_{\vartheta}(T^2) \cdot \vartheta^4(\tau). \end{split}$$

Für T und U = -TJ folgt weiterhin mit [Kri12] Satz XII.4.14:

$$\vartheta^{4}(\tau+1) = \vartheta^{4}(\tau) + \tau^{-2} \cdot \vartheta^{4}(1 - \frac{1}{\tau})$$
$$\vartheta(1 - \frac{1}{\tau}) = \sqrt{\frac{\tau}{i}} \cdot (\vartheta(\frac{\tau}{4}) - \vartheta(\tau))$$

Wir erhalten also:

$$\begin{array}{lll} \vartheta^4(T\tau) & = & \vartheta^4(\tau+1) \\ & = & \vartheta^4(\tau) + \tau^{-2} \cdot \vartheta^4(1-\frac{1}{\tau}) \\ & = & \vartheta^4(\tau) + \tau^{-2} \cdot \left(\sqrt{\frac{\tau}{i}} \cdot (\vartheta(\frac{\tau}{4}) - \vartheta(\tau))\right)^4 \\ & = & \vartheta^4(\tau) - \left(\vartheta(\frac{\tau}{4}) - \vartheta(\tau)\right)^4 \text{ und} \end{array}$$

$$\vartheta^4|_2 U(\tau) = \tau^{-2} \cdot \vartheta^4 (1 - \frac{1}{\tau}) = -(\vartheta(\frac{\tau}{4}) - \vartheta(\tau))^4.$$

Da die Theta-Reihen ϑ holomorph in ∞ ist, gilt dies auch für $\vartheta^4|_2M$ für alle $M \in \Gamma$. Also sind (MK.1), (MK.2) und (MK.3) erfüllt.

(1.11) Bemerkung

$$\mathbf{M}_{k}(\Lambda, \chi) \cdot \mathbf{M}_{l}(\Lambda, \chi') \subset \mathbf{M}_{k+l}(\Lambda, \chi \cdot \chi'), \tag{1}$$

 \Diamond

da das Produkt von auf $\mathbb H$ und ∞ holomorpher Funktionen wieder holomorph auf $\mathbb H$ ist, ist (MK.1) erfüllt, und für beliebige $f \in \mathbb M_k(\Lambda,\chi)$ und $g \in \mathbb M_l(\Lambda,\chi')$ gilt

$$(f \cdot g)|_{k+l}L(\tau) = (c\tau + d)^{-(k+l)} \cdot (f \cdot g)(L\tau) = (c\tau + d)^{-k} \cdot f(L\tau) \cdot (c\tau + d)^{-l} \cdot g(L\tau)$$

$$= f|_k L(\tau) \cdot g|_l L(\tau)$$

$$= \chi(L) \cdot f(\tau) \cdot \chi'(L) \cdot g(\tau)$$

$$= \chi(L)\chi'(L) \cdot (f \cdot g)(\tau),$$

womit auch (MK.2) erfüllt ist. Desweiteren sind $f|_k M$ und $g|_k M$ in ∞ beschränkt und daher mit obigen Umformungen auch $(f \cdot g)|_k M = f|_k M \cdot g|_k M$ für alle $M \in \Gamma$, also ist (MK.3) erfüllt. \diamond

Eine erste triviale Existenzbedingung erhält man, wenn man in (MK.2) L = -E schreibt:

 \Diamond

(1.12) Proposition

Es sei $k \in \mathbb{Z}$, Λ eine Kongruenzgruppe für die gilt, dass $-E \in \Lambda$ und χ ein abelscher Charakter von Λ ist.

Ist
$$\chi(-E) \neq (-1)^k$$
, dann folgt $\mathbb{M}_k(\Lambda, \chi) = \{0\}$.

Beweis

Wir setzen -E in (MK.2) ein und erhalten:

$$f|_k(-E)(\tau) = (-1)^{-k} \cdot f(\tau) \stackrel{!}{=} \chi(-E) \cdot f(\tau)$$

$$\Rightarrow (-1)^k = \chi(-E) \text{ oder } f(\tau) = 0 \ \forall \ \tau \in \mathbb{H}.$$

Also gilt für
$$\chi(-E) \neq (-1)^k$$
, dass $\mathbb{M}_k(\Lambda, \chi) = \{0\}$ ist.

Mit Hilfe von Definition(1.9) erhalten wir einen Isomorphismus zwischen den ganzen Modulformen zu Λ und den zu Λ konjugierten Untergruppen.

(1.13) Proposition

Es sei wieder $k \in \mathbb{Z}$, Λ eine Kongruenzgruppe, χ ein abelscher Charakter von Λ und $M \in \Gamma$. Dann gilt für χ_M mit

$$\chi_M(K) := \chi(MKM^{-1}) \text{ für alle } K \in M^{-1}\Lambda M:$$
 (2)

 χ_M ist ein abelscher Charakter von $M^{-1}\Lambda M$ und die Abbildung

$$\Phi: \mathbb{M}_k(\Lambda, \chi) \to \mathbb{M}_k(M^{-1}\Lambda M, \chi_M), f \mapsto f|_k M, \tag{3}$$

ist ein Vektorraumisomorphismus.

Beweis

Wir zeigen zunächst, dass χ_M ein abelscher Charakter von $M^{-1}\Lambda M$ ist. Es ist $K \in M^{-1}\Lambda M$, also ist $MKM^{-1} \in MM^{-1}\Lambda MM^{-1} = \Lambda$. Man erhält damit

$$\chi_M(K) \cdot \chi_M(L) = \chi(MKM^{-1}) \cdot \chi(MLM^{-1}) \stackrel{\text{Charakter von } \Lambda}{=} \chi(MKLM^{-1}) = \chi_M(KL)$$

Desweiteren ist $M^{-1}\Lambda M$ eine Kongruenzgruppe, da sie $\Gamma[n]$ enthält ($\Gamma[n] \subset \Lambda \stackrel{\textit{Bemerkung}(1.7)}{\Rightarrow} \Gamma[n] \subset M^{-1}\Lambda M$) und wie bereits gesehen ist χ_M ein abelscher Charakter.

Es müssen also noch (MK.1) bis (MK.3) überprüft werden:

Zu (MK.1): Sowohl f als auch $\tau \to (c\tau + d)^{-k}$ sind holomorph auf \mathbb{H} , es folgt also die Holomorphie von $f|_k M = (c\tau + d)^{-k} f(M\tau)$ auf \mathbb{H} .

Zu (MK.2): Für $L \in M^{-1}\Lambda M$ existiert ein $N \in \Lambda$, sodass $L = M^{-1}NM$.

$$(f|_{k}M)|_{k}L(\tau) = (f|_{k}M)|_{k}(M^{-1}NM)(\tau)$$

$$= (f|_{k}N)|_{k}M(\tau)$$

$$\stackrel{N \in \Lambda}{=} \chi(N)f|_{k}M(\tau)$$

$$\stackrel{\text{Def.}}{=} \chi_{M}(L)f|_{k}M(\tau)$$

Zu (MK.3): Es ist $(f|_k M)|_k N = f|_k MN$ und da $M \in \Gamma$ ist auch $MN \in \Gamma$, also ist $f|_k MN$ holomorph in ∞, da $f \in \mathbb{M}_k(\Lambda, \chi)$.

Es bleibt zu zeigen, dass die Abbildung Φ ein Isomorphismus ist:

 Φ ist ein Homomorphismus und da aus $f|_k M = g|_k M$ direkt f = g folgt, ergibt sich auch die Injektivität.

Für ein $g \in \mathbb{M}_k(M^{-1}\Lambda M, \chi_M)$ sei $f := g|_k M^{-1}$ und dies ist in $\mathbb{M}_k(\Lambda, \chi)$, da mit $M^{-1} \in \Gamma$

$$\Phi(g) \in \mathbb{M}_k(MM^{-1}\Lambda MM^{-1}, \chi_{MM^{-1}}) = \mathbb{M}_k(\Lambda, \chi)$$

ist.

Mit $f|_k M = g$ folgt also die Surjektivität.

§2 Die Fourier-Entwicklung

Bei genauerer Betrachtung von (MK.3) aus §1 ist es sinnvoll, sich die Fourier-Entwicklung in beliebigen Spitzen von Λ näher anzuschauen, um dann mit deren Hilfe später eine Dimensionsabschätzung anzugeben.

(2.1) Satz

Seien $k \in \mathbb{Z}$, $\Lambda \supset \Gamma[n]$ eine Kongruenzgruppe und χ ein abelscher Charakter $mod\ n$ von Λ . Zu jedem $f \in \mathbb{M}_k(\Lambda, \chi)$ und $M \in \Gamma$ besitzt $f|_k M$ eine Fourier-Entwicklung der Form

$$f|_k M(\tau) = \sum_{m=0}^{\infty} \alpha_f(m; M) \cdot e^{2\pi i m \tau/n}, \ \tau \in \mathbb{H}, \tag{4}$$

welche für jedes $\varepsilon > 0$ auf der Menge $\{\tau \in \mathbb{H} \mid \operatorname{Im}(\tau) \geq \varepsilon\}$ absolut gleichmäßig konvergiert. Dabei sind die Fourier-Koeffizienten $\alpha_f(m; M)$ eindeutig bestimmt und erfüllen

$$\alpha_f(m; LM) = \chi(L) \cdot \alpha_f(m; M) \text{ für alle } m \in \mathbb{N}_0, \ L \in \Lambda \text{ und } M \in \Gamma.$$
 (5)

Beweis

 $\Gamma[n]$ ist nach Bemerkung(1.7) ein Normalteiler in Γ , also gilt $M\Gamma[n]M^{-1} = \Gamma[n]$. Es gilt zudem $\Gamma[n] \subset \Lambda$, also $\chi|_{\Gamma[n]} \equiv 1$ und daraus folgt $f|_k N \stackrel{N \in \Gamma[n]}{=} \chi(N) \cdot f \stackrel{N \in \Gamma[n]}{=} 1 \cdot f$ und damit ist $f \in \mathbb{M}_k(\Gamma[n])$. Mit Proposition (1.13) folgt dann $f|_k M \in \mathbb{M}_k(\Gamma[n])$. Betrachte nun

$$g(\tau) := f|_k M(n\tau), \ \tau \in \mathbb{H}.$$

Da $n\tau$ ∈ \mathbb{H} , ist g holomorph auf \mathbb{H} und in ∞.

Es ist $T^n \in \Gamma[n]$ und daher gilt:

$$g(\tau + 1) = f|_{k}M(n\tau + n)$$

$$= f|_{k}M(T^{n}(n\tau))$$

$$= (f|_{k}M)|_{k}T^{n}(n\tau)$$

$$\stackrel{(MK.2)}{=} f|_{k}M(n\tau)$$

$$= g(\tau)$$

somit ist g periodisch mit der Periode 1. Nach [Kri10]V.4.3 und da g holomorph in ∞ ist besitzt g also eine Fourier-Entwicklung der Form

$$g(\tau) = \sum_{m=0}^{\infty} \alpha_g(m) e^{2\pi i m \tau},$$

die für ${\rm Im}(\tau)>0$ absolut gleichmäßig konvergiert und eindeutig bestimmte Koeffizienten hat. Wenn man nun in $f|_k M(n\tau)$ τ durch $\frac{\tau}{n}$ substituiert erhält man

$$g(\frac{\tau}{n}) = f|_k M(\tau) = \sum_{m=0}^{\infty} \alpha_f(m; M) e^{2\pi i m \tau/n}.$$

also die Behauptung.

Zeige zuletzt noch (5). Es ist:

$$\begin{array}{lcl} f|_k LM(\tau) & = & (f|_k L)|_k M(\tau) \\ & \stackrel{L \in \Lambda}{=} & \chi(L) \cdot f|_k M(\tau) \\ & = & \chi(L) \cdot \sum_{m=0}^{\infty} \alpha_f(m; M) e^{2\pi i m \tau/n}. \end{array}$$

Die Behauptung folgt somit aus der Eindeutigkeit der Koeffizienten.

§3 Der Übergang zur vollen Modulgruppe

Nun werden zwei Möglichkeiten dargelegt, um aus ganzen Modulformen zu Kongruenzgruppen ganze Modulformen zur vollen Modulgruppe zu konstruieren. Dazu eine rein algebraische Überlegung:

(3.1) Lemma

Es sei U eine Untergruppe einer Gruppe G mit endlichem Index m. Ist $g_1, ..., g_m$ ein Vertretersystem der Rechsnebenklassen von G nach U, also

$$G = \bigcup_{j=1}^{m} Ug_j, \tag{6}$$

wobei es eine disjunkte Vereinigung ist und $g \in G$, so ist auch g_1g , ..., g_mg ein Vertretersystem der Rechtsnebenklassen. \diamond

Beweis

 ${\it G}$ besitzt genau ${\it m}$ Rechtsnebenklassen nach der Untergruppe ${\it U}$ nach Vorraussetzung.

Die Rechtsnebenklassen $Ug_1,...,Ug_m$ sind paarweise disjunkt, und gäbe es in $Ug_1g,...,Ug_mg$ zwei Rechtsnebenklassen mit $Ug_ig = Ug_jg$ mit $i \neq j$ so würde auch $Ug_i = Ug_j$ folgen, ein Widerspruch. Also sind auch die $g_1g,...,g_mg$ ein Vertretersystem der Rechtsnebenklassen von G nach G.

Wir wenden diese Überlegung nun auf Modulforman an:

(3.2) Korollar

Seien $k \in \mathbb{Z}$ und Λ eine Kongruenzgruppe vom Index m in Γ . Desweiteren sei $M_1,...,M_m$ ein Vertretersystem der Rechtsnebenklassen von Γ nach Λ und sei $f \in \mathbb{M}_k(\Lambda)$. Dann gilt:

1.

$$\mathrm{Sp}(f) := \sum_{j=1}^m f|_k M_j \in \mathbb{M}_k,$$

2.

$$\pi(f) := \prod_{j=1}^m f|_k M_j \in \mathbb{M}_{km}.$$

 \Diamond

Sp(f) heißt die *Spur* von f.

Beweis

Aufgrund von $f|_k L = f$ mit $L \in \Lambda$ nach (MK.2) hängen die Definitionen von $\operatorname{Sp}(f)$ und $\pi(f)$ nicht von der Wahl der Vertreter der Rechtsnebenklassen ab. Denn seien M, M' Vertreter der selben Rechtsnebenklasse, so existiert $N \in \Lambda$ mit M = NM'. Da $\chi(N) = 1$ ist folgt $f|_k M = f|_k M'$.

Aufgrund von $f|_k M \in \mathbb{M}_k(M^{-1}\Lambda M)$ nach Proposition(1.13) ist $f|_k M$ holomorph auf \mathbb{H} , also auch die Summe.

Nach Lemma(3.1) ist M_1M , ..., M_mM ein Vertretersystem für beliebiges $M \in \Gamma$. Darüberhinaus ist $Sp(f)|_kM = \sum_{j=1}^m f_kM_jM$ und da die Darstellung vom Vertreter unabhängig ist erhält man so

$$\operatorname{Sp}(f)|_k M = \operatorname{Sp}(f).$$

Da $f|_k M$ holomorph in ∞ ist, ist auch die Summe holomorph in ∞ . Mit

$$\pi(f)|_{km}M(\tau) = \left(\prod_{j=1}^{m} f|_{k}M_{j}\right)|_{km}M(\tau) = (c\tau + d)^{-km} \cdot \left(\prod_{j=1}^{m} f|_{k}M_{j}\right)(M\tau)$$
$$= \prod_{j=1}^{m} f|_{k}M_{j}M = \pi(f)$$

folgt dies für $\pi(f)$ analog.

§4 Negatives Gewicht und ganze Modulfunktionen

Wenn das Gewicht k nicht positiv ist, so sind die Ergebnisse ähnlich den Resultaten zu M_k .

(4.1) Satz

Seien $k \in \mathbb{Z}$, Λ eine Kongruenzgruppe und χ ein endlicher abelscher Charakter von Λ . Dann gilt:

a)
$$\mathbb{M}_k(\Lambda, \chi) = \{0\}$$
, falls $k < 0$

b)
$$\mathbb{M}_0(\Lambda) = \mathbb{C}$$
 und $\mathbb{M}_0(\Lambda, \chi) = \{0\}$, falls $\chi \neq 1$.

Beweis

Für $m \in \mathbb{N}$ mit $\chi^m = 1$, $k \neq 0$ und $f \in \mathbb{M}_k(\Lambda, \chi)$ gehört $g := f^m$ nach Bemerkung(1.11) zu $\mathbb{M}_{km}(\Lambda)$. Betrachten wir gemäß Korollar(3.2) $\pi(g) \in \mathbb{M}_{lkm}$ mit $l := [\Gamma : \Lambda]$.

- a) Aufgrund von lkm < 0 und [KK07] Satz III.1.5 folgt $\pi(g) \equiv 0$. Es ist $\pi(g) = \prod_{j=1}^m g|_k M_j \equiv 0$, und aufgrund des Identiätssatzes gibt es keinen Nullteiler, es existiert also ein j mit $g|_k M_j \equiv 0$. Damit ist dann $g|_k M_j(\tau) = (c\tau + d)^{-k} \cdot g(M_j\tau) = 0$ und es folgt, dass g auf \mathbb{H} Null ist. Da $g = f^m$ gilt, muss also auch $f \equiv 0$ sein.
- b) Für die Konstanten gilt offensichtlich (MK.1) bis (MK.3), es gilt also $\mathbb{C} \subseteq \mathbb{M}_0(\Lambda)$. Zeige also noch, dass für jedes $h \in \mathbb{M}_0(\Lambda)$ gilt, dass h konstant ist. Betrachte dazu $\tilde{h} := h - \alpha_h(0) \in \mathbb{M}_0(\Lambda)$. Dann ist $\tilde{h} = \tilde{h}|_0 E$ und $\alpha_{\tilde{h}}(0, E) = 0$. Ohne Einschränkung können wir $M_1 = E, ..., M_l$ als Vertretersystem wählen und es gilt:

$$\lim_{y\to\infty} \pi(\tilde{h})(iy) = \lim_{y\to\infty} \prod_{j=1}^l \tilde{h}|_0 M_j(iy) = \lim_{y\to\infty} (\tilde{h}|_0 E(iy)) \cdot \lim_{y\to\infty} \prod_{j=1}^l \tilde{h}|_0 M_j(iy)$$

Mit Satz(2.1) und $\alpha_{\tilde{h}}(0, E) = 0$ folgt aus der absolut gleichmäßigen Konvergenz der Fourier-Entwicklung auf \mathbb{H} :

$$\lim_{y\to\infty}(\tilde{h}|_{0}E(iy))=\lim_{y\to\infty}\sum_{m=1}^{\infty}\alpha_{\tilde{h}}(m;E)\cdot e^{-2\pi my/n}=0.$$

Man hat dann $\lim_{y\to\infty}\pi(\tilde{h})(iy)=0$ und da $\pi(\tilde{h})\in\mathbb{M}_0$ und $\mathbb{M}_0=\mathbb{C}$ ist $\pi(\tilde{h})\equiv 0$. So erhält man $\tilde{h}\equiv 0$. h ist also konstant.

Sei nun $\chi \neq 1$. Aufgrund des ersten Teils folgt mit $g \in \mathbb{M}_0(\Lambda)$, dass $g = f^m$ konstant ist. Also ist auch f konstant. Aufgrund von (MK.2) ist also $f \equiv 0$, ansonsten gäbe es ein $L \in \Lambda$ mit $\chi(L) \neq 1$ und $f|_k L = \chi(L)f \Leftrightarrow f(i) = \chi(L) \cdot f(i)$ ein Widerspruch.

§5 Positives Gewicht

Falls nun k>0, das Gewicht also positiv ist, erhält man über die ersten Fourier-Koeffizienten eine Abschätzung über die Dimension des Vektorraums ganzer Modulformen von Gewicht k zur Kongruenzgruppe Λ und zum Charakter χ .

Dazu zunächst die Aussage über *f* anhand der ersten Fourier-Koeffizienten.

(5.1) Satz

Seien $k \in \mathbb{N}$, Λ eine Kongruenzgruppe und χ ein abelscher Charakter $mod\ n$ von Λ . Sei $\Lambda^* := \{L \in \Lambda | \chi(L) = 1\}$ und $l := [\Gamma : \Lambda^*]$. Ist $f \in \mathbb{M}_k(\Lambda, \chi)$ und $M \in \Gamma$ mit

$$\alpha_f(m; M) = 0 \text{ für } 0 \le m \le \frac{lkn}{12},\tag{7}$$

so ist $f \equiv 0$.

Beweis

Wir können $f \in \mathbb{M}_k(\Lambda, \chi)$ auch als $f \in \mathbb{M}_k(\Lambda^*)$ betrachten. Nach Korollar(3.2) ist dann $\pi(f) \in \mathbb{M}_{lk}$. Desweiteren kann man

$$g = \pi(f) = \sum_{m>0} \alpha_g(m) e^{2\pi i m \tau}$$

schreiben. Nach Satz(2.1) bekommt man

$$f|_k M(\tau) = \sum_{m=0}^{\infty} \alpha_f(m; M) \cdot e^{2\pi i m \tau/n}.$$

Setzt man dies nun ein gilt bei Wahl eines Vertretersystems $M_1,...,M_l$ von Γ/Λ , wobei ohne Einschränkung $M_1=M$ sei:

$$\pi(f) = f|_{k} M \cdot \prod_{j=2}^{l} f|_{k} M_{j}$$

$$= \sum_{m=0}^{\infty} \alpha_{f}(m; M) \cdot e^{2\pi i m \tau / n} \cdot \prod_{j=2}^{l} \sum_{m=0}^{\infty} \alpha_{f}(m; M_{j}) \cdot e^{2\pi i m \tau / n}$$

$$= \sum_{m=\left[\frac{lkn}{12}\right]+1}^{\infty} \alpha_{f}(m; M) \cdot e^{2\pi i m \tau / n} \cdot \prod_{j=2}^{l} \sum_{m=0}^{\infty} \alpha_{f}(m; M_{j}) \cdot e^{2\pi i m \tau / n}$$

$$= \sum_{m>0} \alpha_{g}(m) e^{2\pi i m \tau}$$

und mit Koeffizientenvergleich erhält man direkt

$$\alpha_g(m) = 0 \text{ für } 0 \le m \le \frac{lk}{12}.$$

Dann gilt bereits nach [Kri12] Korollar XII.4.7 $g \equiv 0$ und damit auch $f \equiv 0$ analog zum Beweis von Satz (4.1)a).

Damit können wir nun auch folgende Abschätzung für die Dimension von $\mathbb{M}_k(\Lambda,\chi)$ beweisen.

(5.2) Korollar

Es gilt

$$\dim \mathbb{M}_k(\Lambda,\chi) \leq \left[\frac{lkn}{12}\right] + 1.$$
 \diamond

Beweis

Wir betrachten den Monomorphismus

$$\Psi: \mathbb{M}_k(\Lambda, \chi) \to \mathbb{C}^{\left[\frac{lkn}{12}\right]+1}, f \mapsto \begin{pmatrix} \alpha_f(0, M) \\ \vdots \\ \alpha_f(\left[\frac{lkn}{12}\right], M) \end{pmatrix}.$$

Dann gilt

$$\dim \mathbb{M}_k(\Lambda,\chi) \leq \dim \mathbb{C}^{\left[\frac{lkn}{12}\right]+1} = \left[\frac{lkn}{12}\right] + 1.$$

Zeige also noch, Ψ ist ein Homomorphismus und injektiv.

Wegen $(af + bg)|_k M = af|_k M + bg|_k M$ und der Eindeutigkeit der Fourier-Koeffizienten ist

$$\Psi(af + bg) = \begin{pmatrix} a\alpha_f(0, M) + b\alpha_g(0, M) \\ \vdots \\ a\alpha_f(\left[\frac{lkn}{12}\right], M) + b\alpha_g(\left[\frac{lkn}{12}\right], M) \end{pmatrix} = a\Psi(f) + b\Psi(g),$$

also ist Ψ ein Homomorphismus.

Seien nun $f,g \in \mathbb{M}_k(\Lambda,\chi)$ mit $\Psi(f) = \Psi(g)$, also

$$\begin{pmatrix} \alpha_f(0, M) \\ \vdots \\ \alpha_f(\left[\frac{lkn}{12}\right], M) \end{pmatrix} = \begin{pmatrix} \alpha_g(0, M) \\ \vdots \\ \alpha_g(\left[\frac{lkn}{12}\right], M) \end{pmatrix}$$

und dies ist gleichbedeutend mit

$$\begin{pmatrix} \alpha_f(0,M) - \alpha_g(0,M) \\ \vdots \\ \alpha_f(\left[\frac{lkn}{12}\right] + 1, M) - \alpha_g(\left[\frac{lkn}{12}\right], M) \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Es gilt also $\alpha_{f-g}(m;M)=0$ für alle $0\leq m\leq \frac{lkn}{12}$, also mit Satz(5.1) $f-g\equiv 0$ und demnach f=g, also ist Ψ injektiv.

§6 Spitzenformen

Seien $k \in \mathbb{Z}$, Λ eine Kongruenzgruppe und χ ein abelscher Charakter von Λ . Wir nennen $f \in \mathbb{M}_k(\Lambda,\chi)$ *Spitzenform*, wenn $f|_kM$ für alle $M \in \Gamma$ in ∞ eine Nullstelle hat, also $\alpha_f(0;M) = 0$ gilt (vgl.[Kri12] XII.1). Den Unterraum der Spitzenformen bezeichnen wir mit $\mathbb{S}_k(\Lambda,\chi)$.

Aus Proposition(1.13) folgern wir damit unmittelbar:

$$f \in \mathbb{S}_k(\Lambda, \chi), \ M \in \Gamma \Rightarrow f|_k M \in \mathbb{S}_k(M^{-1}\Lambda M, \chi_M),$$
 (8)

Und falls $f: \mathbb{H} \to \mathbb{C}$ ist, definieren wir wie in [KK07] III.1.5(1)

$$\tilde{f}: \mathbb{H} \to \mathbb{R}, \ \tau \mapsto (\operatorname{Im} \tau)^{k/2} \cdot |f(\tau)|.$$
 (9)

(6.1) Satz

Es seien $k \in \mathbb{N}$, Λ eine Kongruenzgruppe, χ ein abelscher Charakter $mod\ n$ von Λ und $f \in \mathbb{M}_k(\Lambda,\chi)$ gegeben. Dann gilt:

- a) \tilde{f} ist Λ -invariant, also $\tilde{f}(L\tau) = \tilde{f}(\tau)$ für alle $L \in \Lambda$.
- b) Genau dann wenn f eine Spitzenform ist, ist \tilde{f} auf \mathbb{H} beschränkt.

c) Wenn $f \in \mathbb{S}_k(\Lambda, \chi)$, so gilt $\alpha_f(m; M) = \mathcal{O}(m^{k/2})$ für alle $m \in \mathbb{N}$ und $M \in \Gamma$.

Beweis

zu a) Unter Verwendung von [Kri12]XI.1.1c) (Im $M\tau = \frac{\det M}{|c\tau + d|^2}$ Im τ) und (MK.2) aus §1 erhält man

$$\begin{split} \tilde{f}(L\tau) &= (\operatorname{Im} L\tau)^{k/2} \cdot |f(L\tau)| \\ &= (\frac{\det L}{|c\tau + d|^2} \operatorname{Im} \tau)^{k/2} \cdot |f(L\tau)| \\ \overset{\det L=1}{=} (\operatorname{Im} \tau)^{k/2} \cdot |(c\tau + d)^{-k} \cdot f(L\tau)| \\ &= (\operatorname{Im} \tau)^{k/2} \cdot |f|_k L(\tau)| \\ \overset{(MK.2)}{=} (\operatorname{Im} \tau)^{k/2} \cdot |\chi(L) \cdot f(\tau)| \\ \overset{|\chi|=1}{=} (\operatorname{Im} \tau)^{k/2} \cdot |f(\tau)| \\ &= \tilde{f}(\tau) \end{split}$$

zu b) Wir wissen bereita aus [KK07], dass

$$\mathbb{F}(\Lambda) = \bigcup_{1 \leq j \leq l} M_j \overline{\mathbb{F}}$$

mit $l := [\Gamma : \tilde{\Lambda}]$, $\tilde{\Lambda} := \{\pm L | L \in \Lambda\}$ und $M_1, ..., M_l$ ein Vertretersystem der Rechtsnebenklassen von Γ nach $\tilde{\Lambda}$ ist.

Es gilt also:

$$ilde{f}$$
 ist beschränkt auf \mathbb{H}
 $\overset{a)}{\Leftrightarrow}$ $ilde{f}$ ist beschränkt auf $\mathbb{F}(\Lambda)$
 \Leftrightarrow $ilde{f}$ ist beschränkt auf $M_j\overline{\mathbb{F}}$
 \Leftrightarrow $ilde{f}(M_j\tau)$ ist beschränkt für $\tau\in\overline{\mathbb{F}}$.

Nun ist

$$\tilde{f}(M_{j}\tau) = \left(\frac{\det M_{j}}{|c\tau + d|^{2}}\operatorname{Im}\tau\right)^{k/2} \cdot |f(M_{j}\tau)|$$

$$= \frac{1}{|c\tau + d|^{-k}}\operatorname{Im}(\tau)^{k/2} \cdot |(c\tau + d)^{k}f|_{k}M_{j}(\tau)|$$

$$= \operatorname{Im}(\tau)^{k/2} \cdot |f|_{k}M_{j}(\tau)|$$

$$= y^{k/2} \cdot |f|_{k}M_{j}(\tau)| \operatorname{mit}\tau = x + iy$$

Und damit folgt weiter:

$$ilde{f}(M_j au)$$
ist beschränkt für $au\in\overline{\mathbb{F}}$ $\Leftrightarrow \ y^{k/2}\cdot f|_kM_j(au)$ ist beschränkt auf $\overline{\mathbb{F}}$.

Desweiteren wissen wir, dass

$$f|_k M_j(\tau) = \sum_{m=0}^{\infty} \alpha_f(m; M_j) e^{2\pi i m \tau/n},$$

also

$$y^{k/2} \cdot f|_k M_j(\tau)$$
 ist beschränkt auf $\overline{\mathbb{F}}$ $\Leftrightarrow \alpha_f(0, M_j) = 0$ für $0 \le j \le l$ $\Leftrightarrow \alpha_f(0; M) = 0 \ \forall M \in \Gamma(\exists N \in \Lambda, \ 0 \le j \le l : \alpha_f(0; M) = \alpha_f(0; NM_j) \stackrel{(2.1)}{=} \chi(N)\alpha_f(0; M_j) = 0)$ $\Leftrightarrow f$ ist eine Spitzenform.

zu c) Da f eine Spitzenform ist, gilt mit (8), dass $f|_k M$ eine Spitzenform und damit $\widetilde{f|_k M}$ auf $\mathbb H$ beschränkt ist. Es existiert also nach b) eine Konstante $C<\infty$ mit

$$\widetilde{f|_k M}(\tau) \le C \text{ für alle } \tau \in \mathbb{H}, \ M \in \Gamma.$$
 (10)

Mit [Kri10] Satz V.4.3 und $g(\tau) = f|_k M(n\tau)$ ergibt sich

$$\alpha_g(m) = \int\limits_{[iy/n,iy/n+1]} g(\tau)e^{-2\pi im\tau}d\tau$$

$$= \int\limits_{[iy/n,iy/n+1]} f|_k M(n\tau)e^{-2\pi im\tau}d\tau$$

$$\stackrel{t=\tau n}{=} \int\limits_{[iy,iy+n]} f|_k M(t)e^{-2\pi imt/n}\frac{1}{n}dt$$

$$\stackrel{t=x+iy}{=} \frac{1}{n} \cdot \int\limits_0^n f|_k M(x+iy)e^{-2\pi im(x+iy)/n}dx$$

$$= \frac{1}{n} \cdot e^{2\pi my/n} \cdot \int\limits_0^n f|_k M(x+iy)e^{-2\pi imx/n}dx.$$

Also ergibt sich für die Fourier-Koeffizienten von f nach Satz(2.1):

$$\begin{aligned} |\alpha_f(m;M)| &= |\frac{1}{n} \cdot e^{2\pi my/n} \cdot \int_0^n f|_k M(x+iy) \cdot e^{2\pi i mx/n} dx| \\ &\leq \frac{1}{n} \cdot e^{2\pi my/n} \cdot \int_0^n |f|_k M(x+iy) \cdot e^{-2\pi i mx/n} |dx| \\ &= \frac{1}{n} \cdot e^{2\pi my/n} \cdot \int_0^n |f|_k M(x+iy) |dx| \\ &= \frac{1}{n} \cdot e^{2\pi my/n} \cdot y^{-k/2} \cdot \int_0^n \widetilde{f|_k} M(x+iy) dx \\ &\leq \frac{1}{n} \cdot e^{2\pi my/n} \cdot y^{-k/2} \cdot \int_0^n C dx \\ &= e^{2\pi my/n} \cdot y^{-k/2} \cdot C \end{aligned}$$

Setzen wir nun $y = \frac{1}{m}$ ein, erhalten wir

$$|\alpha_f(m; M)| \le e^{2\pi m \frac{1}{m}/n} \cdot \frac{1}{m}^{-k/2} \cdot C = e^{2\pi/n} \cdot m^{k/2} \cdot C.$$

Somit folgt $\alpha_f(m; M) = \mathcal{O}(m^{k/2})$.

Zuletzt noch eine Aussage über Spitzenfromen zum Gewicht 2 über $\Gamma_0[2]$.

(6.2) Korollar

Es gilt:

$$S_2(\Gamma_0[2]) = \{0\} \qquad \qquad \diamond$$

Beweis

Es ist $\Gamma_0[2]$ eine Untergruppe von Γ mit Index 3 und Vertretersystem E, J, U^2 (vgl.[Kri12] XI.3). Für $f \in S_2(\Gamma_0[2])$ ist dann aber

$$\pi(f) = f \cdot f|_2 J \cdot f|_2 U^2 \in \mathbb{S}_6$$

nach Korollar(3.2) und da die Nullstellen in ∞ im Produkt erhalten bleibt. Nach [Kri12] XII.4.1 ist S_6 aber gleich $\{0\}$, also ist $f \equiv 0$.

Es folgt
$$S_2(\Gamma_0[2]) = \{0\}.$$

Literatur

- [KK07] M. Koecher, A. Krieg: Elliptische Funktionen und Modulformen, Springer, 2007
- [Kri10] A. Krieg: Funktionentheorie I, Vorlesungsskript, RWTH Aachen, 2010
- [Kri12] A. Krieg: Funktionentheorie II, Vorlesungsskript, RWTH Aachen, 2012