Prof. Dr. S. Walcher Dipl.-Math. Bernd Ohligs

10. Übung zur Vorlesung Topologie

(Abgabe: Freitag, 05.07.2002, bis 11.45 Uhr im Übungskasten)

Aufgabe 1: Sei *X* ein topologischer Raum.

- a) Es seien $a,b,c \in X$ und es gebe eine Kurve von a nach b und eine Kurve von b nach c. Zeigen Sie: Es existiert eine Kurve von a nach c und eine Kurve von b nach a.
- b) Zeigen Sie: Sind A, B kurvenzusammenhängende Teilmengen von X und ist $A \cap B \neq \emptyset$, so ist auch $A \cup B$ kurvenzusammenhängend. Genügt hierfür auch die schwächere Voraussetzung $\overline{A} \cap B \neq \emptyset$? (Beweis oder Gegenbeispiel!)
- c) Zeigen Sie: Jede kurvenzusammenhängende Teilmenge *Y* von *X* liegt in einer maximalen kurvenzusammenhängenden Teilmenge.

Aufgabe 2*: Gegeben sei der \mathbb{R}^n mit der natürlichen Topologie.

- a) Zeigen Sie: Ist $U \subset \mathbb{R}^n$ offen, so ist jede Zusammenhangskomponente von U offen, und es gibt höchstens abzählbar unendlich viele solche Komponenten.
- b) Geben Sie eine Teilmenge des \mathbb{R}^n mit überabzählbar vielen Zusammenhangskomponenten an.

Aufgabe 3: a) Zeigen Sie, dass die folgenden Mengen wegzusammenhängende Teilmengen von $M_n(\mathbb{R})\mathbb{R}^{\sim}$ mit der natürlichen Topologie sind:

- (i) die Menge $P_n(\mathbb{R})$ der positiv definiten Matrizen,
- (ii) $SL_n(\mathbb{R})$ (spezielle lineare Gruppe),
- (iii) $SO_n(\mathbb{R}) = \{U \in M_n(\mathbb{R}) ; U\bar{U^t} = E, \det U = 1\}$ (spezielle orthogonale Gruppe).
- b) Wie sehen die Zusammenhangskomponenten der orthogonalen Gruppe $O_n(\mathbb{R})$ aus?

Aufgabe 4: Sei X ein topologischer Raum und $A \subset X$ beliebig. Zeigen Sie, dass es einen topologischen Raum Y und zwei stetige Abbildungen $f,g:X\to Y$ gibt mit

$$\{x \in X : f(x) = g(x)\} = A.$$

Hinweis: Wählen Sie für Y einen geeigneten Quotientenraum von $X \times \{1,2\}$.