Prof. Dr. S. Walcher Dipl.-Math. Bernd Ohligs

5. Übung zur Vorlesung Topologie

(Abgabe: Freitag, 31.05.2001, bis 11.45 Uhr im Übungskasten)

Aufgabe 1: Die Menge $M_n(\mathbb{R}) \cong \mathbb{R}^{n^2}$ der reellen $n \times n$ -Matrizen sei mit der natürlichen Topologie versehen.

- a) Zeigen Sie, dass die folgenden Mengen abgeschlossene Teilmengen von $M_n(\mathbb{R})$ sind:
 - (i) $\operatorname{Sym}_n(\mathbb{R}) = \{ S \in M_n(\mathbb{R}); S^t = S \}$ (symmetrische Matrizen),
 - (ii) Alt_n(\mathbb{R}) = { $A \in M_n(\mathbb{R})$; $A^t = -A$ } (schiefsymmetrische Matrizen),
 - (iii) $O_n(\mathbb{R}) = \{U \in M_n(\mathbb{R}); UU^t = U^tU = E\}$ (orthogonale Gruppe),
 - (iv) $SL_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}); \det A = 1\}$ (spezielle lineare Gruppe),
 - (v) $N_n(\mathbb{R}) = \{ N \in M_n(\mathbb{R}) ; \exists k \in \mathbb{N} \ N^k = 0 \}$ (nilpotente Matrizen).
- b) Zeigen Sie, dass die allgemeine lineare Gruppe $GL_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}); \det A \neq 0\}$ eine offene Teilmenge von $M_n(\mathbb{R})$ ist.
- c) Zeigen Sie, dass die Menge $D_n(\mathbb{R})$ der diagonalisierbaren Matrizen in $M_n(\mathbb{R})$ für n > 1 weder offen noch abgeschlossen ist.
- d) Zeigen Sie, dass die Menge $P_n(\mathbb{R})$ der positiv definiten Matrizen eine offene Teilmenge und die Menge $\operatorname{Psd}_n(\mathbb{R})$ der positiv semi-definiten Matrizen, eine abgeschlossene Teilmenge von $\operatorname{Sym}_n(\mathbb{R}) \cong \mathbb{R}^{n(n+1)/2}$ ist.

Aufgabe 2: Seien $\underline{X} := (X, \mathcal{T}_X), \underline{Y} := (X, \mathcal{T}_Y)$ topologische Räume und $f : X \to Y$ stetig und bijektiv. In welchen der folgenden Fälle ist f dann notwendig ein Homöomorphimus bzw. mit Sicherheit kein Homöomorphimus?

- a) $\underline{X} = \underline{Y} = (\mathbb{R}, \mathcal{T}_{nat}),$
- b) $X = Y = (\mathbb{R}, \mathcal{T}_{cof}),$
- c) $\underline{X} = (\mathbb{R}, \mathcal{T}_{nat}), \underline{Y} = (\mathbb{R}, \mathcal{T}_{cof}),$
- d) $\underline{X} = (\mathbb{R}, \mathcal{T}_{cof}), \underline{Y} = (\mathbb{R}, \mathcal{T}_{nat}).$

Aufgabe 3*: Sei \mathbb{N} versehen mit der cofiniten Topologie. $f, g, h : \mathbb{N} \to \mathbb{N}$ seien definiert durch f(1) = g(1) = h(1) := 1 und

$$f(n) := \max\{k \in \mathbb{N} \mid k | n \text{ und } k < n\},\$$

$$g(n) := \max\{k \in \mathbb{N} \mid k | n \text{ und } k \text{ prim}\},\$$

$$h(n) := \begin{cases} n, & \text{falls } n \text{ prim},\ n - g(n), & \text{sonst.} \end{cases}$$

für $n \ge 2$. Untersuchen Sie die Abbildungen f, g und h auf Stetigkeit.

Aufgabe 4: (Canberra-Metrik) Sei $\mathbb{R}^+ := \{x \in \mathbb{R}; x > 0\}$ und $n \in \mathbb{N}$. Definiere dann

$$d(x,y) := \sum_{i=1}^{n} \frac{|x_i - y_i|}{|x_i| + |y_i|} \qquad (x = (x_1, ..., x_n)^t, y = (y_1, ..., y_n)^t \in (\mathbb{R}^+)^n).$$

Zeigen Sie:

- a) d ist eine Metrik auf $(\mathbb{R}^+)^n$. **Hinweis:** Betrachten Sie beim Nachweis der Dreiecksungleichung zuerst den Fall n = 1.
- b) Für $A = diag(\alpha_1, ..., \alpha_n) \in (\mathbb{R}^+)^{n \times n}$ gilt

$$d(Ax,Ay) = d(x,y)$$
 (Skaleninvarianz).